These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32279640)
41. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals. Jia X; Listak J; Witherspoon V; Kalu EE; Yang X; Bockstaller MR Langmuir; 2010 Jul; 26(14):12190-7. PubMed ID: 20575544 [TBL] [Abstract][Full Text] [Related]
42. Ostwald ripening for designing time-dependent crystal hydrogels. Liu Q; Fang Y; Xiong X; Xu W; Cui J Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202320095. PubMed ID: 38419359 [TBL] [Abstract][Full Text] [Related]
43. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. Trujillo-Cayado LA; Santos J; Calero N; Alfaro-Rodríguez MC; Muñoz J J Sci Food Agric; 2020 Mar; 100(4):1671-1677. PubMed ID: 31802496 [TBL] [Abstract][Full Text] [Related]
44. Phase field crystal simulations of the kinetics of Ostwald ripening in two dimensions. Moats KA; Asadi E; Laradji M Phys Rev E; 2019 Jan; 99(1-1):012803. PubMed ID: 30780278 [TBL] [Abstract][Full Text] [Related]
45. Aggregation according to classical kinetics: from nucleation to coarsening. Farjoun Y; Neu JC Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051607. PubMed ID: 21728547 [TBL] [Abstract][Full Text] [Related]
46. A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. Zhang J; Lin Z; Lan Y; Ren G; Chen D; Huang F; Hong M J Am Chem Soc; 2006 Oct; 128(39):12981-7. PubMed ID: 17002395 [TBL] [Abstract][Full Text] [Related]
47. Active suppression of Ostwald ripening: Beyond mean-field theory. Bressloff PC Phys Rev E; 2020 Apr; 101(4-1):042804. PubMed ID: 32422749 [TBL] [Abstract][Full Text] [Related]
48. How Crystals Nucleate and Grow in Aqueous NaCl Solution. Chakraborty D; Patey GN J Phys Chem Lett; 2013 Feb; 4(4):573-8. PubMed ID: 26281868 [TBL] [Abstract][Full Text] [Related]
49. Real-Time Observation of CaCO Dae KS; Chang JH; Koo K; Park J; Kim JS; Yuk JM ACS Omega; 2020 Jun; 5(24):14619-14624. PubMed ID: 32596599 [TBL] [Abstract][Full Text] [Related]
50. Return radius and volume of recrystallized material in Ostwald ripening. Haußer F; Lakshtanov E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):062601. PubMed ID: 23367992 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of classical precipitation descriptions for Moore IJ; Burke MG; Nuhfer NT; Palmiere EJ J Mater Sci; 2017; 52(14):8665-8680. PubMed ID: 32103837 [TBL] [Abstract][Full Text] [Related]
52. On the Stability of Nano-formulations Prepared by Direct Synthesis: Simulated Ostwald Ripening of a Typical Nanocrystal Distribution Post-nucleation. Skrdla PJ; Yang H AAPS PharmSciTech; 2019 Jan; 20(1):34. PubMed ID: 30603812 [TBL] [Abstract][Full Text] [Related]
53. Diffusional mechanism of strong selection in ostwald ripening. Rubinstein I; Zaltzman B Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):709-17. PubMed ID: 11046314 [TBL] [Abstract][Full Text] [Related]
54. Coarsening of Quasi Two-Dimensional Emulsions Formed by Islands in Free-Standing Smectic Films. Klopp C; Trittel T; Stannarius R Chemphyschem; 2024 Jun; 25(12):e202400166. PubMed ID: 38529677 [TBL] [Abstract][Full Text] [Related]
55. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems. Kini GC; Biswal SL; Wong MS; Miller CA J Colloid Interface Sci; 2012 Nov; 385(1):111-21. PubMed ID: 22892335 [TBL] [Abstract][Full Text] [Related]