These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32279640)

  • 61. Growth mechanism of nanocrystals in solution: ZnO, a case study.
    Viswanatha R; Santra PK; Dasgupta C; Sarma DD
    Phys Rev Lett; 2007 Jun; 98(25):255501. PubMed ID: 17678035
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    J Am Chem Soc; 2015 Dec; 137(48):15161-8. PubMed ID: 26544914
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database.
    Nandipati G; Shim Y; Amar JG; Karim A; Kara A; Rahman TS; Trushin O
    J Phys Condens Matter; 2009 Feb; 21(8):084214. PubMed ID: 21817366
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.
    Chen MW; Li LY; Guo HM
    J Chem Phys; 2017 Aug; 147(8):084707. PubMed ID: 28863507
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions.
    Ariyaprakai S; Dungan SR
    J Colloid Interface Sci; 2010 Mar; 343(1):102-8. PubMed ID: 20042193
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetics of Precipitation Processes at Non-Zero Input Fluxes of Segregating Particles.
    Schmelzer JWP; Tropin TV; Abyzov AS
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832695
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On the theory of the unsteady-state growth of spherical crystals in metastable liquids.
    Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180209. PubMed ID: 30827213
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS
    Song B; He K; Yuan Y; Sharifi-Asl S; Cheng M; Lu J; Saidi WA; Shahbazian-Yassar R
    Nanoscale; 2018 Aug; 10(33):15809-15818. PubMed ID: 30102314
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Parallel kinetic Monte Carlo simulations of two-dimensional island coarsening.
    Shi F; Shim Y; Amar JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031607. PubMed ID: 17930256
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elemental sulfur coarsening kinetics.
    Garcia AA; Druschel GK
    Geochem Trans; 2014; 15():11. PubMed ID: 26561455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly(methyl methacrylate) thin films.
    Meli L; Green PF
    ACS Nano; 2008 Jun; 2(6):1305-12. PubMed ID: 19206349
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ostwald ripening in nanoalloys: when thermodynamics drives a size-dependent particle composition.
    Alloyeau D; Prévot G; Le Bouar Y; Oikawa T; Langlois C; Loiseau A; Ricolleau C
    Phys Rev Lett; 2010 Dec; 105(25):255901. PubMed ID: 21231603
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A mechanism for reversible mesoscopic aggregation in liquid solutions.
    Chan HY; Lubchenko V
    Nat Commun; 2019 May; 10(1):2381. PubMed ID: 31147533
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Time-dependent distributions in self-quenching nucleation.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031602. PubMed ID: 22060380
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fast coalescence of metallic glass nanoparticles.
    Tian Y; Jiao W; Liu P; Song S; Lu Z; Hirata A; Chen M
    Nat Commun; 2019 Nov; 10(1):5249. PubMed ID: 31748516
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Theoretical Study of Ripening Mechanisms of Pd Clusters on Ceria.
    Su YQ; Liu JX; Filot IAW; Hensen EJM
    Chem Mater; 2017 Nov; 29(21):9456-9462. PubMed ID: 29170602
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.
    Nakagawa K; Tamiya S; Do G; Kono S; Ochiai T
    Eur J Pharm Biopharm; 2018 Jun; 127():279-287. PubMed ID: 29510203
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Topological complexity and the dynamics of coarsening.
    Mendoza R; Savin I; Thornton K; Voorhees PW
    Nat Mater; 2004 Jun; 3(6):385-8. PubMed ID: 15156200
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoreactors for studying single nanoparticle coarsening.
    Chai J; Liao X; Giam LR; Mirkin CA
    J Am Chem Soc; 2012 Jan; 134(1):158-61. PubMed ID: 22235989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.