BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32279751)

  • 1. Cell-free scaffold from jellyfish Cassiopea andromeda (Cnidaria; Scyphozoa) for skin tissue engineering.
    Fernández-Cervantes I; Rodríguez-Fuentes N; León-Deniz LV; Alcántara Quintana LE; Cervantes-Uc JM; Herrera Kao WA; Cerón-Espinosa JD; Cauich-Rodríguez JV; Castaño-Meneses VM
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110748. PubMed ID: 32279751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.
    Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering.
    Solovieva EV; Fedotov AY; Mamonov VE; Komlev VS; Panteleyev AA
    Biomed Mater; 2018 Jan; 13(2):025007. PubMed ID: 28972200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering.
    Qian J; Yong X; Xu W; Jin X
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4587-93. PubMed ID: 24094164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering.
    Zulkifli FH; Hussain FSJ; Harun WSW; Yusoff MM
    Int J Biol Macromol; 2019 Feb; 122():562-571. PubMed ID: 30365990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.
    Hoveizi E; Nabiuni M; Parivar K; Rajabi-Zeleti S; Tavakol S
    Cell Biol Int; 2014 Jan; 38(1):41-9. PubMed ID: 24030862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; Gariépy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.
    Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL
    Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tough, precision-porous hydrogel scaffold: ophthalmologic applications.
    Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD
    Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.
    Chaudhari AA; Vig K; Baganizi DR; Sahu R; Dixit S; Dennis V; Singh SR; Pillai SR
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27898014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold: a novel carrier for cell and drug delivery.
    Garg T; Singh O; Arora S; Murthy R
    Crit Rev Ther Drug Carrier Syst; 2012; 29(1):1-63. PubMed ID: 22356721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.