These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 32279776)
1. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid. Guerra C; Sancy M; Walczak M; Martínez C; Ringuedé A; Cassir M; Han J; Ogle K; de Melo HG; Salinas V; Aguilar C Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110758. PubMed ID: 32279776 [TBL] [Abstract][Full Text] [Related]
3. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering. Wang H; Li J; Yang H; Liu C; Ruan J Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467 [TBL] [Abstract][Full Text] [Related]
4. The effect of Staphylococcus aureus on the electrochemical behavior of porous Ti-6Al-4V alloy. Silva D; Guerra C; Muñoz H; Aguilar C; Walter M; Azocar M; Muñoz L; Gürbüz E; Ringuedé A; Cassir M; Sancy M Bioelectrochemistry; 2020 Dec; 136():107622. PubMed ID: 32784103 [TBL] [Abstract][Full Text] [Related]
5. Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications. Acharya S; Panicker AG; Gopal V; Dabas SS; Manivasagam G; Suwas S; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110729. PubMed ID: 32204039 [TBL] [Abstract][Full Text] [Related]
6. Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti-Nb-based alloys for bone implants. Sheremetyev V; Petrzhik M; Zhukova Y; Kazakbiev A; Arkhipova A; Moisenovich M; Prokoshkin S; Brailovski V J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):647-662. PubMed ID: 31121090 [TBL] [Abstract][Full Text] [Related]
7. The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys. Jírů J; Hybášek V; Vlčák P; Fojt J Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675171 [TBL] [Abstract][Full Text] [Related]
8. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques. Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505 [TBL] [Abstract][Full Text] [Related]
9. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Yang X; Hutchinson CR Acta Biomater; 2016 Sep; 42():429-439. PubMed ID: 27397494 [TBL] [Abstract][Full Text] [Related]
10. Povidone-iodine as a corrosion inhibitor towards a low modulus beta Ti-45Nb implant alloy in a simulated body fluid. Bhola SM; Bhola R; Mishra B; Olson DL J Mater Sci Mater Med; 2011 Apr; 22(4):773-9. PubMed ID: 21424214 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of Ti-Ta-Nb-Mn foams. Aguilar C; Guerra C; Lascano S; Guzman D; Rojas PA; Thirumurugan M; Bejar L; Medina A Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():420-31. PubMed ID: 26478329 [TBL] [Abstract][Full Text] [Related]
12. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation. Abdi S; Oswald S; Gostin PF; Helth A; Sort J; Baró MD; Calin M; Schultz L; Eckert J; Gebert A J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):27-38. PubMed ID: 25611821 [TBL] [Abstract][Full Text] [Related]
13. Corrosion and bioactivity performance of graphene oxide coating on TiNb shape memory alloys in simulated body fluid. Saud SN; Hosseinian S R; Bakhsheshi-Rad HR; Yaghoubidoust F; Iqbal N; Hamzah E; Ooi CHR Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():687-694. PubMed ID: 27524069 [TBL] [Abstract][Full Text] [Related]
14. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Xiong J; Li Y; Wang X; Hodgson P; Wen C Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702 [TBL] [Abstract][Full Text] [Related]
15. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. Bozzini B; Carlino P; D'Urzo L; Pepe V; Mele C; Venturo F J Mater Sci Mater Med; 2008 Nov; 19(11):3443-53. PubMed ID: 18584125 [TBL] [Abstract][Full Text] [Related]
16. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys. Rosalbino F; Macciò D; Giannoni P; Quarto R; Saccone A J Mater Sci Mater Med; 2011 May; 22(5):1293-302. PubMed ID: 21461699 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical synthesis of porous Ti-Nb alloys for biomedical applications. Sri Maha Vishnu D; Sure J; Liu Y; Vasant Kumar R; Schwandt C Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():466-478. PubMed ID: 30606556 [TBL] [Abstract][Full Text] [Related]
18. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid. Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Characterization of a Novel Biocompatible Alloy, Ti-Nb-Zr-Ta-Sn. Khrunyk YY; Ehnert S; Grib SV; Illarionov AG; Stepanov SI; Popov AA; Ryzhkov MA; Belikov SV; Xu Z; Rupp F; Nüssler AK Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638960 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]