These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 32279825)
41. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Ressler A; Ródenas-Rochina J; Ivanković M; Ivanković H; Rogina A; Gallego Ferrer G Carbohydr Polym; 2018 Oct; 197():469-477. PubMed ID: 30007636 [TBL] [Abstract][Full Text] [Related]
42. A bioprintable form of chitosan hydrogel for bone tissue engineering. Demirtaş TT; Irmak G; Gümüşderelioğlu M Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943 [TBL] [Abstract][Full Text] [Related]
43. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381 [TBL] [Abstract][Full Text] [Related]
44. A MgFe-LDH Nanosheet-Incorporated Smart Thermo-Responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. Lv Z; Hu T; Bian Y; Wang G; Wu Z; Li H; Liu X; Yang S; Tan C; Liang R; Weng X Adv Mater; 2023 Feb; 35(5):e2206545. PubMed ID: 36426823 [TBL] [Abstract][Full Text] [Related]
45. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694 [TBL] [Abstract][Full Text] [Related]
46. Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino-Yne Click Reaction. Huang J; Jiang X ACS Appl Mater Interfaces; 2018 Jan; 10(1):361-370. PubMed ID: 29235844 [TBL] [Abstract][Full Text] [Related]
48. Injectable hydrogels for cartilage and bone tissue engineering. Liu M; Zeng X; Ma C; Yi H; Ali Z; Mou X; Li S; Deng Y; He N Bone Res; 2017; 5():17014. PubMed ID: 28584674 [TBL] [Abstract][Full Text] [Related]
49. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
51. [Research development of injectable scaffolds for tissue regeneration]. Hong Y; Gao C; Shen J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):463-5. PubMed ID: 17591283 [TBL] [Abstract][Full Text] [Related]
52. Biopolymeric hydrogels - nanostructured TiO Zazakowny K; Lewandowska-Łańcucka J; Mastalska-Popławska J; Kamiński K; Kusior A; Radecka M; Nowakowska M Colloids Surf B Biointerfaces; 2016 Dec; 148():607-614. PubMed ID: 27694050 [TBL] [Abstract][Full Text] [Related]
53. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Moreira CD; Carvalho SM; Mansur HS; Pereira MM Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1207-16. PubMed ID: 26478423 [TBL] [Abstract][Full Text] [Related]
54. Chitosan based nanofibers in bone tissue engineering. Balagangadharan K; Dhivya S; Selvamurugan N Int J Biol Macromol; 2017 Nov; 104(Pt B):1372-1382. PubMed ID: 27993655 [TBL] [Abstract][Full Text] [Related]
55. Injectable pH and Thermo-Responsive Hydrogel Scaffold with Enhanced Osteogenic Differentiation of Preosteoblasts for Bone Regeneration. King JL; Shrivastava R; Shah PD; Maturavongsadit P; Benhabbour SR Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765239 [TBL] [Abstract][Full Text] [Related]
56. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Taghipour YD; Hokmabad VR; Del Bakhshayesh AR; Asadi N; Salehi R; Nasrabadi HT Curr Med Chem; 2020; 27(16):2658-2680. PubMed ID: 31296151 [TBL] [Abstract][Full Text] [Related]
57. Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering. Saekhor K; Udomsinprasert W; Honsawek S; Tachaboonyakiat W Int J Biol Macromol; 2019 Feb; 123():167-173. PubMed ID: 30423397 [TBL] [Abstract][Full Text] [Related]
58. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. El-Husseiny HM; Mady EA; Doghish AS; Zewail MB; Abdelfatah AM; Noshy M; Mohammed OA; El-Dakroury WA Int J Biol Macromol; 2024 Mar; 260(Pt 1):129323. PubMed ID: 38242393 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of physicochemical, mechanical and biological properties of chitosan/carboxymethyl cellulose reinforced with multiphasic calcium phosphate whisker-like fibers for bone tissue engineering. Matinfar M; Mesgar AS; Mohammadi Z Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():341-353. PubMed ID: 30948070 [TBL] [Abstract][Full Text] [Related]
60. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Choi B; Kim S; Fan J; Kowalski T; Petrigliano F; Evseenko D; Lee M Biomater Sci; 2015 May; 3(5):742-52. PubMed ID: 26222593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]