These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
670 related articles for article (PubMed ID: 32279826)
1. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Shah Z; Hassan S; Shaheen K; Khan SA; Gul T; Anwar Y; Al-Shaeri MA; Khan M; Khan R; Haleem MA; Suo H Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110829. PubMed ID: 32279826 [TBL] [Abstract][Full Text] [Related]
2. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621 [TBL] [Abstract][Full Text] [Related]
3. Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications. Khatun H; Alam S; Aziz MA; Karim MR; Rahman MH; Rabbi MA; Habib MR Bioprocess Biosyst Eng; 2024 Aug; 47(8):1347-1362. PubMed ID: 38720156 [TBL] [Abstract][Full Text] [Related]
4. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112 [TBL] [Abstract][Full Text] [Related]
5. Phytosynthesis of Silver Nanoparticles Using Reddy NV; Li H; Hou T; Bethu MS; Ren Z; Zhang Z Int J Nanomedicine; 2021; 16():15-29. PubMed ID: 33447027 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution. Khan ZU; Khan A; Shah A; Chen Y; Wan P; Khan AU; Tahir K; Muhamma N; Khan FU; Shah HU J Photochem Photobiol B; 2016 Mar; 156():100-7. PubMed ID: 26874611 [TBL] [Abstract][Full Text] [Related]
7. Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. Zaheer Z J Photochem Photobiol B; 2018 Jan; 178():584-592. PubMed ID: 29272851 [TBL] [Abstract][Full Text] [Related]
8. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. Edison TNJI; Atchudan R; Sethuraman MG; Lee YR J Photochem Photobiol B; 2016 Sep; 162():604-610. PubMed ID: 27479841 [TBL] [Abstract][Full Text] [Related]
9. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Lomelí-Marroquín D; Medina Cruz D; Nieto-Argüello A; Vernet Crua A; Chen J; Torres-Castro A; Webster TJ; Cholula-Díaz JL Int J Nanomedicine; 2019; 14():2171-2190. PubMed ID: 30988615 [TBL] [Abstract][Full Text] [Related]
10. Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum. Devanesan S; Ponmurugan K; AlSalhi MS; Al-Dhabi NA Int J Nanomedicine; 2020; 15():4351-4362. PubMed ID: 32606682 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Ajitha B; Reddy YA; Reddy PS J Photochem Photobiol B; 2015 May; 146():1-9. PubMed ID: 25771428 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa. Anjum S; Abbasi BH Int J Nanomedicine; 2016; 11():1663-75. PubMed ID: 27217745 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of microbial growth by silver nanoparticles synthesized from Fraxinus xanthoxyloides leaf extract. Rafiq A; Zahid K; Qadir A; Khan MN; Khalid ZM; Ali N J Appl Microbiol; 2021 Jul; 131(1):124-134. PubMed ID: 33251642 [TBL] [Abstract][Full Text] [Related]
14. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Salehi S; Shandiz SA; Ghanbar F; Darvish MR; Ardestani MS; Mirzaie A; Jafari M Int J Nanomedicine; 2016; 11():1835-46. PubMed ID: 27199558 [TBL] [Abstract][Full Text] [Related]
15. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities. Li HF; Pan ZC; Chen JM; Zeng LX; Xie HJ; Liang ZQ; Wang Y; Zeng NK Int J Biol Macromol; 2024 Jan; 254(Pt 1):127579. PubMed ID: 37918606 [TBL] [Abstract][Full Text] [Related]
16. One-Pot Reducing Agent-Free Synthesis of Silver Nanoparticles/Nitrocellulose Composite Surface Coating with Antimicrobial and Antibiofilm Activities. Kumarasinghe KGUR; Silva WCH; Fernando MDA; Palliyaguru L; Jayawardena PS; Shimomura M; Fernando SSN; Gunasekara TDCP; Jayaweera PM Biomed Res Int; 2021; 2021():6666642. PubMed ID: 33855077 [TBL] [Abstract][Full Text] [Related]
17. Green Synthesis of Dracocephalum kotschyi-Coated Silver Nanoparticles: Antimicrobial, Antioxidant, and Anticancer Potentials. Peng Y; Hu Y; Liu Y; Lin H Med Sci Monit; 2024 Oct; 30():e944823. PubMed ID: 39358918 [TBL] [Abstract][Full Text] [Related]
18. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. Verma DK; Hasan SH; Banik RM J Photochem Photobiol B; 2016 Feb; 155():51-9. PubMed ID: 26735000 [TBL] [Abstract][Full Text] [Related]
19. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. Nguyen TT; Vo TT; Nguyen BN; Nguyen DT; Dang VS; Dang CH; Nguyen TD Environ Sci Pollut Res Int; 2018 Dec; 25(34):34247-34261. PubMed ID: 30291612 [TBL] [Abstract][Full Text] [Related]
20. Bacteriogenic synthesis of morphologically diverse silver nanoparticles and their assessment for methyl orange dye removal and antimicrobial activity. Patel B; Yadav VK; Desai R; Patel S; Amari A; Choudhary N; Osman H; Patel R; Balram D; Lian KY; Sahoo DK; Patel A PeerJ; 2024; 12():e17328. PubMed ID: 38770094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]