These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32280132)

  • 1. Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis.
    Zhai J; Qi A; Zhang Y; Jiao L; Liu Y; Shou S
    Med Sci Monit; 2020 Apr; 26():e920818. PubMed ID: 32280132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatic analysis of pivotal genes associated with septic shock.
    Liu SY; Zhang L; Zhang Y; Zhen Y; Wu YF
    J Biol Regul Homeost Agents; 2017; 31(4):935-941. PubMed ID: 29254296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study.
    Kong C; Zhu Y; Xie X; Wu J; Qian M
    Front Immunol; 2023; 14():1184700. PubMed ID: 37359526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The identification of neutrophils-mediated mechanisms and potential therapeutic targets for the management of sepsis-induced acute immunosuppression using bioinformatics.
    Chen F; Yao C; Feng Y; Yu Y; Guo H; Yan J; Chen J
    Medicine (Baltimore); 2021 Mar; 100(12):e24669. PubMed ID: 33761636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic analysis identifies potential biomarkers and therapeutic targets of septic-shock-associated acute kidney injury.
    Tang Y; Yang X; Shu H; Yu Y; Pan S; Xu J; Shang Y
    Hereditas; 2021 Apr; 158(1):13. PubMed ID: 33863396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Identification of differentially expressed genes and pathways changing in neutrophils of patients with sepsis by bioinformatics analysis].
    He C; Zhang Y; Duan Y; Yu J; Luo B; Jiang N; Liang Y; Zeng J; Zheng X; Xian Y
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2019 Jun; 35(6):481-490. PubMed ID: 31292051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis.
    Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses.
    Chen M; Kong C; Zheng Z; Li Y
    J Comput Biol; 2020 Jan; 27(1):69-80. PubMed ID: 31424269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database.
    Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H
    Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD3D and CD247 are the molecular targets of septic shock.
    Yang Q; Feng Z; Ding D; Kang C
    Medicine (Baltimore); 2023 Jul; 102(29):e34295. PubMed ID: 37478215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
    Hu S; Liao Y; Chen L
    Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Verification of Potential Core Genes in Pediatric Septic Shock.
    Xu Z; Jiang M; Bai X; Ding L; Dong P; Jiang M
    Comb Chem High Throughput Screen; 2022; 25(13):2228-2239. PubMed ID: 35272594
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Jiang Y; Miao Q; Hu L; Zhou T; Hu Y; Tian Y
    Comb Chem High Throughput Screen; 2022; 25(10):1722-1730. PubMed ID: 34397323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long Noncoding RNA THAP9-AS1 and TSPOAP1-AS1 Provide Potential Diagnostic Signatures for Pediatric Septic Shock.
    Wu Y; Yin Q; Zhang X; Zhu P; Luan H; Chen Y
    Biomed Res Int; 2020; 2020():7170464. PubMed ID: 33344646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells.
    Godini R; Fallahi H; Ebrahimie E
    PLoS One; 2018; 13(8):e0201674. PubMed ID: 30086151
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang X; Wang LT; Yu B
    Biomed Res Int; 2022; 2022():9463717. PubMed ID: 35445133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of CD177 as the most dysregulated parameter in a microarray study of purified neutrophils from septic shock patients.
    Demaret J; Venet F; Plassais J; Cazalis MA; Vallin H; Friggeri A; Lepape A; Rimmelé T; Textoris J; Monneret G
    Immunol Lett; 2016 Oct; 178():122-30. PubMed ID: 27568821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.