These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 32280339)
1. Development and application of observable response indicators for design of an effective ozone and fine particle pollution control strategy in China. Xing J; Ding D; Wang S; Dong Z; Kelly JT; Jang C; Zhu Y; Hao J Atmos Chem Phys; 2019; 19(21):13627-13646. PubMed ID: 32280339 [TBL] [Abstract][Full Text] [Related]
3. [Response of PM Shang YJ; Mao YH; Liao H; Hu JL; Zou ZY Huan Jing Ke Xue; 2023 Aug; 44(8):4250-4261. PubMed ID: 37694620 [TBL] [Abstract][Full Text] [Related]
4. Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China. Fang T; Zhu Y; Wang S; Xing J; Zhao B; Fan S; Li M; Yang W; Chen Y; Huang R Environ Pollut; 2021 Nov; 289():117860. PubMed ID: 34332168 [TBL] [Abstract][Full Text] [Related]
5. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
6. Real-time source contribution analysis of ambient ozone using an enhanced meta-modeling approach over the Pearl River Delta Region of China. Fang T; Zhu Y; Jang J; Wang S; Xing J; Chiang PC; Fan S; You Z; Li J J Environ Manage; 2020 Aug; 268():110650. PubMed ID: 32510427 [TBL] [Abstract][Full Text] [Related]
7. Data assimilation of ambient concentrations of multiple air pollutants using an emission-concentration response modeling framework. Xing J; Li S; Ding D; Kelly JT; Wang S; Jang C; Zhu Y; Hao J Atmosphere (Basel); 2020; 11(12):. PubMed ID: 33425379 [TBL] [Abstract][Full Text] [Related]
8. VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China. Hu Y; Shi B; Yuan X; Zheng C; Sha Q; Yu Y; Huang Z; Zheng J J Environ Sci (China); 2023 Jan; 123():430-445. PubMed ID: 36522004 [TBL] [Abstract][Full Text] [Related]
9. Optimization of a NO Ding D; Xing J; Wang S; Dong Z; Zhang F; Liu S; Hao J Environ Sci Technol; 2022 Jan; 56(2):739-749. PubMed ID: 34962805 [TBL] [Abstract][Full Text] [Related]
10. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China. You Z; Zhu Y; Jang C; Wang S; Gao J; Lin CJ; Li M; Zhu Z; Wei H; Yang W J Environ Sci (China); 2017 Jan; 51():294-304. PubMed ID: 28115141 [TBL] [Abstract][Full Text] [Related]
11. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014-2016. Ma T; Duan F; He K; Qin Y; Tong D; Geng G; Liu X; Li H; Yang S; Ye S; Xu B; Zhang Q; Ma Y J Environ Sci (China); 2019 Sep; 83():8-20. PubMed ID: 31221390 [TBL] [Abstract][Full Text] [Related]
12. Co-occurrence of ozone and PM Dai H; Liao H; Wang Y; Qian J Sci Total Environ; 2024 May; 924():171687. PubMed ID: 38485008 [TBL] [Abstract][Full Text] [Related]
13. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861 [TBL] [Abstract][Full Text] [Related]
14. Aggravating O Wang N; Lyu X; Deng X; Huang X; Jiang F; Ding A Sci Total Environ; 2019 Aug; 677():732-744. PubMed ID: 31075619 [TBL] [Abstract][Full Text] [Related]
15. Responses of surface O He Z; Liu P; Zhao X; He X; Liu J; Mu Y Sci Total Environ; 2022 Feb; 807(Pt 2):150792. PubMed ID: 34619192 [TBL] [Abstract][Full Text] [Related]
16. Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China. Wang R; Wang L; Sun J; Zhang L; Li Y; Li K; Liu B; Zhang J; Wang Y Sci Total Environ; 2023 Dec; 905():166987. PubMed ID: 37717781 [TBL] [Abstract][Full Text] [Related]
17. Overview on the spatial-temporal characteristics of the ozone formation regime in China. Lu H; Lyu X; Cheng H; Ling Z; Guo H Environ Sci Process Impacts; 2019 Jun; 21(6):916-929. PubMed ID: 31089656 [TBL] [Abstract][Full Text] [Related]
18. Changing Responses of PM Hu W; Zhao Y; Lu N; Wang X; Zheng B; Henze DK; Zhang L; Fu TM; Zhai S Environ Sci Technol; 2024 Jan; 58(1):628-638. PubMed ID: 38153406 [TBL] [Abstract][Full Text] [Related]
19. Ozone response modeling to NOx and VOC emissions: Examining machine learning models. Kuo CP; Fu JS Environ Int; 2023 Jun; 176():107969. PubMed ID: 37201398 [TBL] [Abstract][Full Text] [Related]
20. Source and sectoral contribution analysis of PM Pan Y; Zhu Y; Jang J; Wang S; Xing J; Chiang PC; Zhao X; You Z; Yuan Y Sci Total Environ; 2020 Oct; 737():139655. PubMed ID: 32535309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]