These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32280385)

  • 21. Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating.
    Sun Z; Zhang H; Zhao Y; Huang C; Tao R; Liu Z; Wu Z
    Langmuir; 2011 May; 27(10):6244-51. PubMed ID: 21480615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on the catalytic activity of MNP-[Dop-OH]-CuBr
    Feng S; Tan J; Ma Y; Chang LY
    RSC Adv; 2023 May; 13(24):16078-16090. PubMed ID: 37260717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials.
    Mirjafari A
    Chem Commun (Camb); 2018 Mar; 54(24):2944-2961. PubMed ID: 29484324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.
    Motokura K; Tomita M; Tada M; Iwasawa Y
    Chemistry; 2008; 14(13):4017-27. PubMed ID: 18351703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous catalysis by ultra-small bimetallic nanoparticles surpassing homogeneous catalysis for carbon-carbon bond forming reactions.
    Norouzi N; Das MK; Richard AJ; Ibrahim AA; El-Kaderi HM; El-Shall MS
    Nanoscale; 2020 Oct; 12(37):19191-19202. PubMed ID: 32926030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical copper-decorated nickel nanocatalysts supported on La2O3 for low-temperature steam reforming of ethanol.
    Liu JY; Su WN; Rick J; Yang SC; Cheng JH; Pan CJ; Lee JF; Hwang BJ
    ChemSusChem; 2014 Feb; 7(2):570-6. PubMed ID: 24307476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials.
    Astruc D; Liang L; Rapakousiou A; Ruiz J
    Acc Chem Res; 2012 Apr; 45(4):630-40. PubMed ID: 22148925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations.
    Heravi MM; Heidari B; Zadsirjan V; Mohammadi L
    RSC Adv; 2020 Jun; 10(42):24893-24940. PubMed ID: 35517449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper-Based Nanocatalysts with SiO
    Ding L; Hu J; Zhang Y; Xu J; Zhang M
    Inorg Chem; 2022 Jan; 61(3):1717-1727. PubMed ID: 35020384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide-Alkyne Cycloaddition Reactions.
    Aflak N; Ben El Ayouchia H; Bahsis L; Anane H; Julve M; Stiriba SE
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and Characterization of Copper (II) and Nickel (II) Immobilized on Silica- Coated Copper Ferrite: As Novel Magnetically Reusable Nano Catalysts Towards Reduction of Nitroarenes with NaBH4.
    Zeynizadeh B; Sadeghbari M; Pesyan NN
    Curr Org Synth; 2019; 16(7):1010-1023. PubMed ID: 31984882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic and dendritic catalysts.
    Wang D; Deraedt C; Ruiz J; Astruc D
    Acc Chem Res; 2015 Jul; 48(7):1871-80. PubMed ID: 26098668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper nanocatalysts applied in coupling reactions: a mechanistic insight.
    Camats M; Pla D; Gómez M
    Nanoscale; 2021 Nov; 13(45):18817-18838. PubMed ID: 34757356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and application of magnetic chitosan/graphene oxide composite supported copper as a recyclable heterogeneous nanocatalyst in the synthesis of triazoles.
    Mahdavinasab M; Hamzehloueian M; Sarrafi Y
    Int J Biol Macromol; 2019 Oct; 138():764-772. PubMed ID: 31284011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of polyhydroxyalkanoates: Evaluation of the effectiveness of novel copper(II) catalysts in click chemistry.
    Nkrumah-Agyeefi S; Pella BJ; Singh N; Mukherjee A; Scholz C
    Int J Biol Macromol; 2019 May; 128():376-384. PubMed ID: 30682482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Review on Recent Advances in the Application of Nanocatalysts in A
    Nasrollahzadeh M; Sajjadi M; Ghorbannezhad F; Sajadi SM
    Chem Rec; 2018 Oct; 18(10):1409-1473. PubMed ID: 29537731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles.
    Zhang Q; Tong S; Wang MX
    Acc Chem Res; 2022 Oct; 55(19):2796-2810. PubMed ID: 35994690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanochemical synthesis of maghemite/silica nanocomposites: advanced materials for aqueous room-temperature catalysis.
    Ojeda M; Pineda A; Romero AA; Barrón V; Luque R
    ChemSusChem; 2014 Jul; 7(7):1876-80. PubMed ID: 24777936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Stable Copper(I)-Thiacalix[4]arene-Based Frameworks for Highly Efficient Catalysis of Click Reactions in Water.
    Wang XX; Yang J; Xu X; Ma JF
    Chemistry; 2019 Dec; 25(72):16660-16667. PubMed ID: 31793069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Click" Silica-Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity.
    Kasinathan P; Lang C; Radhakrishnan S; Schnee J; D'Haese C; Breynaert E; Martens JA; Gaigneaux EM; Jonas AM; Fernandes AE
    Chemistry; 2019 May; 25(27):6753-6762. PubMed ID: 30875140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.