BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32280804)

  • 1. Behavior of
    Matuzahroh N; Fitriani N; Ardiyanti PE; Kuncoro EP; Budiyanto WD; Isnadina DRM; Wahyudianto FE; Radin Mohamed RMS
    Heliyon; 2020 Apr; 6(4):e03736. PubMed ID: 32280804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal.
    D'Alessio M; Yoneyama B; Kirs M; Kisand V; Ray C
    Sci Total Environ; 2015 Aug; 524-525():124-35. PubMed ID: 25889551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of geotextile-based slow sand filter media in removing total coli for drinking water treatment using system dynamics modelling.
    Fitriani N; Kusuma MN; Wirjodirdjo B; Hadi W; Hermana J; Ni'matuzahroh ; Kurniawan SB; Abdullah SRS; Mohamed RMSR
    Heliyon; 2020 Sep; 6(9):e04967. PubMed ID: 33015386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding light on the total and active core microbiomes in slow sand filters for drinking water production.
    Bai X; Dinkla IJT; Muyzer G
    Water Res; 2023 Sep; 243():120404. PubMed ID: 37586176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of deeper layers in slow sand filters to pathogens removal.
    Trikannad SA; van Halem D; Foppen JW; van der Hoek JP
    Water Res; 2023 Jun; 237():119994. PubMed ID: 37116371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns.
    Pfannes KR; Langenbach KM; Pilloni G; Stührmann T; Euringer K; Lueders T; Neu TR; Müller JA; Kästner M; Meckenstock RU
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10323-32. PubMed ID: 26264137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Slow Sand Filtration for the Removal of Micropollutants from Groundwater.
    Vu CT; Wu T
    Sci Total Environ; 2022 Feb; 809():152161. PubMed ID: 34875329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of slow sand filter cleaning process type on filter media biomass: backwashing versus scraping.
    de Souza FH; Roecker PB; Silveira DD; Sens ML; Campos LC
    Water Res; 2021 Feb; 189():116581. PubMed ID: 33186813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring biofilm function in new and matured full-scale slow sand filters using flow cytometric histogram image comparison (CHIC).
    Chan S; Pullerits K; Riechelmann J; Persson KM; Rådström P; Paul CJ
    Water Res; 2018 Jul; 138():27-36. PubMed ID: 29571086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions.
    Schijven JF; van den Berg HH; Colin M; Dullemont Y; Hijnen WA; Magic-Knezev A; Oorthuizen WA; Wubbels G
    Water Res; 2013 May; 47(7):2592-602. PubMed ID: 23490102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass characterization of slow sand filtration schmutzdecke and its effects on filter performance.
    Muhammad N; Hooke AM
    Environ Technol; 2003 Jan; 24(1):43-50. PubMed ID: 12641251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification.
    Pompei CME; Ciric L; Canales M; Karu K; Vieira EM; Campos LC
    Sci Total Environ; 2017 Mar; 581-582():174-185. PubMed ID: 28041695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass development in slow sand filters.
    Campos LC; Su MF; Graham NJ; Smith SR
    Water Res; 2002 Nov; 36(18):4543-51. PubMed ID: 12418657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of roughing and slow sand filter modified with slag and clinker ash for removal of microorganisms from secondary effluent.
    Letshwenyo MW; Lebogang L
    Environ Technol; 2020 Sep; 41(23):3004-3015. PubMed ID: 30871421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified slow sand filtration system of epikarst spring water in karst mountainous areas, China.
    Zhao Y; Wang X; Yang J; Liu C; Wang S
    J Water Health; 2021 Apr; 19(2):229-241. PubMed ID: 33901020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptophyta and Acetic Acid Bacteria Succession Promoted by Brass in Slow Sand Filter System Schmutzdeckes.
    Delgado-Gardea MCE; Tamez-Guerra P; Gomez-Flores R; Garfio-Aguirre M; Rocha-Gutiérrez BA; Romo-Sáenz CI; Zavala-Díaz de la Serna FJ; Eroza-de la Vega G; Sánchez-Ramírez B; González-Horta MDC; Infante-Ramírez MDR
    Sci Rep; 2019 May; 9(1):7021. PubMed ID: 31065033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration.
    Hijnen WA; Schijven JF; Bonné P; Visser A; Medema GJ
    Water Sci Technol; 2004; 50(1):147-54. PubMed ID: 15318501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.
    Jenkins MW; Tiwari SK; Darby J
    Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water.
    Nasser Fava NM; Terin UC; Freitas BLS; Sabogal-Paz LP; Fernandez-Ibañez P; Anthony Byrne J
    Environ Technol; 2022 Apr; 43(10):1583-1592. PubMed ID: 33092473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of a multi-barrier household system for surface water treatment combining a household slow sand filter to a Mesita Azul® ultraviolet disinfection device.
    Garcia LAT; Silva FL; Freitas BLS; Fava NNM; Reygadas F; Sabogal-Paz LP
    J Environ Manage; 2022 Nov; 321():115948. PubMed ID: 35985271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.