These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32281402)

  • 41. Reviews on 1,4-naphthoquinones from Diospyros L.
    Nematollahi A; Aminimoghadamfarouj N; Wiart C
    J Asian Nat Prod Res; 2012; 14(1):80-8. PubMed ID: 22263598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioactive Lupane and Hopane Triterpenes from Lepisanthes senegalensis.
    Lomchid P; Nasomjai P; Kanokmedhakul S; Boonmak J; Youngme S; Kanokmedhakul K
    Planta Med; 2017 Feb; 83(3-04):334-340. PubMed ID: 27617903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Chemical constituents from roots and rhizomes of Rubia oncotricha and their cytotoxic activities].
    Wang Z; Zhao SM; Zeng GZ; Tan NH
    Zhongguo Zhong Yao Za Zhi; 2018 Nov; 43(22):4462-4468. PubMed ID: 30593239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quinones and coumarins from Ajania salicifolia and their radical scavenging and cytotoxic activity.
    Wu HR; Zhang W; Pang XY; Gong Y; Obulqasim XM; Li HF; Zhu Y
    J Asian Nat Prod Res; 2015; 17(12):1196-203. PubMed ID: 26666298
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytotoxicity of Synthesized 1,4-Naphthoquinone Oxime Derivatives on Selected Human Cancer Cell Lines.
    Zhang Q; Dong J; Cui J; Huang G; Meng Q; Li S
    Chem Pharm Bull (Tokyo); 2018; 66(6):612-619. PubMed ID: 29863062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New isopimarane diterpenes and nortriterpene with cytotoxic activity from Ephorbia alatavica Boiss.
    Rozimamat R; Hu R; Aisa HA
    Fitoterapia; 2018 Jun; 127():328-333. PubMed ID: 29596962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new sesquiterpenoid juvenile hormone III from the stems of
    Phatchana R; Senawong T; Lakornwong W; Sribuhom T; Yenjai C
    J Asian Nat Prod Res; 2022 Dec; 24(12):1185-1191. PubMed ID: 35130808
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential antimalarial derivatives from astraodorol.
    Nasomjai P; Arpha K; Sodngam S; Brandt SD
    Arch Pharm Res; 2014 Dec; 37(12):1538-45. PubMed ID: 24748514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioactive dihydronaphthoquinone derivatives from Fusarium solani.
    Takemoto K; Kamisuki S; Chia PT; Kuriyama I; Mizushina Y; Sugawara F
    J Nat Prod; 2014 Sep; 77(9):1992-6. PubMed ID: 25163667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leishmanicidal activities and cytotoxicities of bisnaphthoquinone analogues and naphthol derivatives from Burman Diospyros burmanica.
    Mori-Yasumoto K; Izumoto R; Fuchino H; Ooi T; Agatsuma Y; Kusumi T; Satake M; Sekita S
    Bioorg Med Chem; 2012 Sep; 20(17):5215-9. PubMed ID: 22858297
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical constituents from the stems of Diospyros maritima.
    Chang CI; Chen CR; Chiu HL; Kuo CL; Kuo YH
    Molecules; 2009 Dec; 14(12):5281-8. PubMed ID: 20032891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antibacterial and Cytotoxic Phenyltetracenoid Polyketides from
    Li X; Wu P; Li H; Xue J; Xu H; Wei X
    J Nat Prod; 2021 Jun; 84(6):1806-1815. PubMed ID: 34081476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three new cytotoxic isomalabaricane triterpenes from the marine sponge Stelletta tenuis.
    Li Y; Tang H; Tian X; Lin H; Wang M; Yao M
    Fitoterapia; 2015 Oct; 106():226-30. PubMed ID: 26385195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents.
    Hu K; Qi YJ; Zhao J; Jiang HF; Chen X; Ren J
    Eur J Med Chem; 2013 Jun; 64():529-39. PubMed ID: 23685571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytotoxic Naphthoquinone and Azaanthraquinone Derivatives from an Endophytic Fusarium solani.
    Chowdhury NS; Sohrab MH; Rana MS; Hasan CM; Jamshidi S; Rahman KM
    J Nat Prod; 2017 Apr; 80(4):1173-1177. PubMed ID: 28257197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two new naphthoquinone derivatives from the stem bark of Callicarpa maingayi.
    Asiri SM; Shaari K; Abas F; Al-Mekhlafi NA; Lajis NH
    Nat Prod Commun; 2012 Oct; 7(10):1333-6. PubMed ID: 23157003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioactive triterpenes from Diospyros blancoi.
    Ragasa CY; Puno MR; Sengson JM; Shen CC; Rideout JA; Raga DD
    Nat Prod Res; 2009; 23(13):1252-8. PubMed ID: 19731144
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxic Naphthoquinone Analogues, Including Heterodimers, and Their Structure Elucidation Using LR-HSQMBC NMR Experiments.
    Flores-Bocanegra L; Raja HA; Bacon JW; Maldonado AC; Burdette JE; Pearce CJ; Oberlies NH
    J Nat Prod; 2021 Mar; 84(3):771-778. PubMed ID: 33006889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lignanamides from the stems of Piper hancei maxim. and their anti-inflammatory and cytotoxic activities.
    Yang F; Li H; Yang YQ; Hou Y; Liang D
    Fitoterapia; 2022 Sep; 161():105231. PubMed ID: 35697208
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of novel spirooxindole-pyrrolidines and evaluation of their cytotoxic activity.
    Tumskiy RS; Burygin GL; Anis'kov AA; Klochkova IN
    Pharmacol Rep; 2019 Apr; 71(2):357-360. PubMed ID: 30844686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.