These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32281499)
21. Ageing alters the physicochemical properties of silver nanoparticles and consequently compromises their acute toxicity in mammals. Wang Z; Li Q; Xu L; Ma J; Wang Y; Wei B; Wu W; Liu S Ecotoxicol Environ Saf; 2020 Jun; 196():110487. PubMed ID: 32229327 [TBL] [Abstract][Full Text] [Related]
24. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Oukarroum A; Barhoumi L; Pirastru L; Dewez D Environ Toxicol Chem; 2013 Apr; 32(4):902-7. PubMed ID: 23341248 [TBL] [Abstract][Full Text] [Related]
25. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Han JW; Jeong JK; Gurunathan S; Choi YJ; Das J; Kwon DN; Cho SG; Park C; Seo HG; Park JK; Kim JH Nanotoxicology; 2016; 10(3):361-73. PubMed ID: 26470004 [TBL] [Abstract][Full Text] [Related]
26. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells--induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles. Aueviriyavit S; Phummiratch D; Maniratanachote R Toxicol Lett; 2014 Jan; 224(1):73-83. PubMed ID: 24126012 [TBL] [Abstract][Full Text] [Related]
27. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Ulm L; Krivohlavek A; Jurašin D; Ljubojević M; Šinko G; Crnković T; Žuntar I; Šikić S; Vinković Vrček I Environ Sci Pollut Res Int; 2015 Dec; 22(24):19990-9. PubMed ID: 26296504 [TBL] [Abstract][Full Text] [Related]
28. Exposure to silver nanoparticles primes mast cells for enhanced activation through the high-affinity IgE receptor. Alsaleh NB; Mendoza RP; Brown JM Toxicol Appl Pharmacol; 2019 Nov; 382():114746. PubMed ID: 31494149 [TBL] [Abstract][Full Text] [Related]
29. Systemic and behavioral effects of intranasal administration of silver nanoparticles. Davenport LL; Hsieh H; Eppert BL; Carreira VS; Krishan M; Ingle T; Howard PC; Williams MT; Vorhees CV; Genter MB Neurotoxicol Teratol; 2015; 51():68-76. PubMed ID: 26340819 [TBL] [Abstract][Full Text] [Related]
30. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Bergin IL; Wilding LA; Morishita M; Walacavage K; Ault AP; Axson JL; Stark DI; Hashway SA; Capracotta SS; Leroueil PR; Maynard AD; Philbert MA Nanotoxicology; 2016; 10(3):352-60. PubMed ID: 26305411 [TBL] [Abstract][Full Text] [Related]
31. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Chuang HC; Hsiao TC; Wu CK; Chang HH; Lee CH; Chang CC; Cheng TJ; Int J Nanomedicine; 2013; 8():4495-506. PubMed ID: 24285922 [TBL] [Abstract][Full Text] [Related]
32. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Silva T; Pokhrel LR; Dubey B; Tolaymat TM; Maier KJ; Liu X Sci Total Environ; 2014 Jan; 468-469():968-76. PubMed ID: 24091120 [TBL] [Abstract][Full Text] [Related]
33. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Huo L; Chen R; Zhao L; Shi X; Bai R; Long D; Chen F; Zhao Y; Chang YZ; Chen C Biomaterials; 2015 Aug; 61():307-15. PubMed ID: 26024651 [TBL] [Abstract][Full Text] [Related]
34. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Park EJ; Choi K; Park K Arch Pharm Res; 2011 Feb; 34(2):299-307. PubMed ID: 21380814 [TBL] [Abstract][Full Text] [Related]
35. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium. Topuz E; van Gestel CA Environ Toxicol Chem; 2015 Dec; 34(12):2816-23. PubMed ID: 26094724 [TBL] [Abstract][Full Text] [Related]
36. Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity. Wu Y; Zhou Q Aquat Toxicol; 2012 Nov; 124-125():238-46. PubMed ID: 22982501 [TBL] [Abstract][Full Text] [Related]
37. Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking. Hsiao IL; Hsieh YK; Chuang CY; Wang CF; Huang YJ Environ Toxicol; 2017 Jun; 32(6):1742-1753. PubMed ID: 28181394 [TBL] [Abstract][Full Text] [Related]
38. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Lim D; Roh JY; Eom HJ; Choi JY; Hyun J; Choi J Environ Toxicol Chem; 2012 Mar; 31(3):585-92. PubMed ID: 22128035 [TBL] [Abstract][Full Text] [Related]
39. Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Kovvuru P; Mancilla PE; Shirode AB; Murray TM; Begley TJ; Reliene R Nanotoxicology; 2015 Mar; 9(2):162-71. PubMed ID: 24713076 [TBL] [Abstract][Full Text] [Related]
40. Are silver nanoparticles always toxic in the presence of environmental anions? Guo Z; Chen G; Zeng G; Yan M; Huang Z; Jiang L; Peng C; Wang J; Xiao Z Chemosphere; 2017 Mar; 171():318-323. PubMed ID: 28027476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]