These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32281748)

  • 1. Zeolite-Assisted Lignin-First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape-Selective Catalysis.
    Subbotina E; Velty A; Samec JSM; Corma A
    ChemSusChem; 2020 Sep; 13(17):4528-4536. PubMed ID: 32281748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.
    Rautiainen S; Di Francesco D; Katea SN; Westin G; Tungasmita DN; Samec JSM
    ChemSusChem; 2019 Jan; 12(2):404-408. PubMed ID: 30485687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-free catalytic fractionation of woody biomass.
    Galkin MV; Smit AT; Subbotina E; Artemenko KA; Bergquist J; Huijgen WJ; Samec JS
    ChemSusChem; 2016 Dec; 9(23):3280-3287. PubMed ID: 27860308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin-First Monomers to Catechol: Rational Cleavage of C-O and C-C Bonds over Zeolites.
    Wu X; Liao Y; Bomon J; Tian G; Bai ST; Van Aelst K; Zhang Q; Vermandel W; Wambacq B; Maes BUW; Yu J; Sels BF
    ChemSusChem; 2022 Apr; 15(7):e202102248. PubMed ID: 34927813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Zeolite-Assisted Lignin-First Fractionation in a Flow-Through Reactor*.
    Kramarenko A; Etit D; Laudadio G; D'Angelo FN
    ChemSusChem; 2021 Sep; 14(18):3838-3849. PubMed ID: 34259395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy.
    Liu X; Bouxin FP; Fan J; Budarin VL; Hu C; Clark JH
    J Hazard Mater; 2021 Jan; 402():123490. PubMed ID: 32712365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depolymerization of Lignin into Monophenolics by Ferrous/Persulfate Reagent under Mild Conditions.
    Bao H; Sagues WJ; Wang Y; Peng W; Zhang L; Yang S; Xiao D; Tong Z
    ChemSusChem; 2020 Dec; 13(24):6582-6593. PubMed ID: 33078554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.
    Hanson SK; Baker RT
    Acc Chem Res; 2015 Jul; 48(7):2037-48. PubMed ID: 26151603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a Hydrogen-Free Reductive Catalytic Fractionation of Wheat Straw Biomass.
    Brienza F; Van Aelst K; Devred F; Magnin D; Sels BF; Gerin P; Cybulska I; Debecker DP
    ChemSusChem; 2023 Jul; 16(13):e202300103. PubMed ID: 36916487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 'Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass.
    Korányi TI; Fridrich B; Pineda A; Barta K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin.
    Deuss PJ; Scott M; Tran F; Westwood NJ; de Vries JG; Barta K
    J Am Chem Soc; 2015 Jun; 137(23):7456-67. PubMed ID: 26001165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment.
    Ferreira JA; Taherzadeh MJ
    Bioresour Technol; 2020 Mar; 299():122695. PubMed ID: 31918973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin.
    Talebi Amiri M; Dick GR; Questell-Santiago YM; Luterbacher JS
    Nat Protoc; 2019 Mar; 14(3):921-954. PubMed ID: 30778206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural.
    Guo T; Li X; Liu X; Guo Y; Wang Y
    ChemSusChem; 2018 Aug; 11(16):2758-2765. PubMed ID: 30009402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confinement-Enhanced Selective Oxidation of Lignin Derivatives to Formic Acid Over Fe-Cu/ZSM-5 Catalysts Under Mild Conditions.
    Zhang Z; Han P; Li L; Zhang X; Cheng X; Lin J; Wan S; Xiong H; Wang Y; Wang S
    ChemSusChem; 2022 Jun; 15(12):e202200218. PubMed ID: 35419991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved catalytic depolymerization of lignin waste using carbohydrate derivatives.
    Gu S; Choi JW; Lee H; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2021 Jan; 268(Pt A):115674. PubMed ID: 33011609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeolites as sustainable catalysts for the selective synthesis of renewable bisphenols from lignin-derived monomers.
    Ferrini P; Koelewijn SF; Van Aelst J; Nuttens N; Sels BF
    ChemSusChem; 2017 May; 10(10):2249-2257. PubMed ID: 28375553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst.
    Kong L; Liu C; Gao J; Wang Y; Dai L
    Bioresour Technol; 2019 Mar; 276():310-317. PubMed ID: 30641329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective production of phenolic monomers via high efficient lignin depolymerization with a carbon based nickel-iron-molybdenum carbide catalyst under mild conditions.
    Yan B; Lin X; Chen Z; Cai Q; Zhang S
    Bioresour Technol; 2021 Feb; 321():124503. PubMed ID: 33310408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics.
    Nishide RN; Truong JH; Abu-Omar MM
    ACS Omega; 2021 Mar; 6(12):8142-8150. PubMed ID: 33817473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.