These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32281996)

  • 21. Predicting folding free energy changes upon single point mutations.
    Zhang Z; Wang L; Gao Y; Zhang J; Zhenirovskyy M; Alexov E
    Bioinformatics; 2012 Mar; 28(5):664-71. PubMed ID: 22238268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q.
    Jespers W; Isaksen GV; Andberg TAH; Vasile S; van Veen A; Åqvist J; Brandsdal BO; Gutiérrez-de-Terán H
    J Chem Theory Comput; 2019 Oct; 15(10):5461-5473. PubMed ID: 31436990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability.
    Li G; Panday SK; Alexov E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PSP-GNM: Predicting Protein Stability Changes upon Point Mutations with a Gaussian Network Model.
    Mishra SK
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.
    Parthiban V; Gromiha MM; Abhinandan M; Schomburg D
    BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurately Predicting Mutation-Caused Stability Changes from Protein Sequences Using Extreme Gradient Boosting.
    Lv X; Chen J; Lu Y; Chen Z; Xiao N; Yang Y
    J Chem Inf Model; 2020 Apr; 60(4):2388-2395. PubMed ID: 32203653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations.
    Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2021 Jan; 30(1):60-69. PubMed ID: 32881105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fast and precise approach for computational saturation mutagenesis and its experimental validation by using an artificial (βα)8-barrel protein.
    Fischer A; Seitz T; Lochner A; Sterner R; Merkl R; Bocola M
    Chembiochem; 2011 Jul; 12(10):1544-50. PubMed ID: 21626637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grading amino acid properties increased accuracies of single point mutation on protein stability prediction.
    Liu J; Kang X
    BMC Bioinformatics; 2012 Mar; 13():44. PubMed ID: 22435732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CUPSAT: prediction of protein stability upon point mutations.
    Parthiban V; Gromiha MM; Schomburg D
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W239-42. PubMed ID: 16845001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.
    Getov I; Petukh M; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):512. PubMed ID: 27070572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 35. Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan.
    Gapsys V; Michielssens S; Seeliger D; de Groot BL
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7364-8. PubMed ID: 27122231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target-template relationships in protein structure prediction and their effect on the accuracy of thermostability calculations.
    Lihan M; Lupyan D; Oehme D
    Protein Sci; 2023 Feb; 32(2):e4557. PubMed ID: 36573828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method.
    Tian J; Wang P; Huang L; Chu X; Wu N; Fan Y
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2997-3006. PubMed ID: 23001009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing RGI lyase thermostability by targeted single point mutations.
    Silva IR; Larsen DM; Jers C; Derkx P; Meyer AS; Mikkelsen JD
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9727-35. PubMed ID: 23995225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein stability prediction: a Poisson-Boltzmann approach.
    Tan YH; Luo R
    J Phys Chem B; 2008 Feb; 112(6):1875-83. PubMed ID: 18211063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.