These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 32282573)

  • 21. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiorespiratory demand and rate of perceived exertion during overground walking with a robotic exoskeleton in long-term manual wheelchair users with chronic spinal cord injury: A cross-sectional study.
    Escalona MJ; Brosseau R; Vermette M; Comtois AS; Duclos C; Aubertin-Leheudre M; Gagnon DH
    Ann Phys Rehabil Med; 2018 Jul; 61(4):215-223. PubMed ID: 29371106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study.
    Stampacchia G; Olivieri M; Rustici A; D'Avino C; Gerini A; Mazzoleni S
    Spinal Cord; 2020 Sep; 58(9):988-997. PubMed ID: 32251368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions.
    Baunsgaard CB; Nissen UV; Brust AK; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Penalva JB; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    J Rehabil Med; 2018 Sep; 50(9):806-813. PubMed ID: 30183055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overground Robotic Exoskeleton Training for Patients With Stroke on Walking-Related Outcomes: A Systematic Review and Meta-analysis of Randomized Controlled Trials.
    Leow XRG; Ng SLA; Lau Y
    Arch Phys Med Rehabil; 2023 Oct; 104(10):1698-1710. PubMed ID: 36972746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Electromechanical Exoskeleton-Assisted Gait Training on Walking Ability of Stroke Patients: A Randomized Controlled Trial.
    Nam YG; Lee JW; Park JW; Lee HJ; Nam KY; Park JH; Yu CS; Choi MR; Kwon BS
    Arch Phys Med Rehabil; 2019 Jan; 100(1):26-31. PubMed ID: 30055163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study.
    Postol N; Spratt NJ; Bivard A; Marquez J
    J Neuroeng Rehabil; 2021 Dec; 18(1):180. PubMed ID: 34953501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementing the exoskeleton Ekso GT
    Høyer E; Opheim A; Jørgensen V
    Disabil Rehabil Assist Technol; 2022 May; 17(4):473-479. PubMed ID: 32838594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury.
    Alamro RA; Chisholm AE; Williams AMM; Carpenter MG; Lam T
    J Neuroeng Rehabil; 2018 Nov; 15(1):109. PubMed ID: 30458839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of a gait center training to improve walking ability and vital parameters in inpatient neurological rehabilitation- a cohort study.
    Reichl S; Weilbach F; Mehrholz J
    J Neuroeng Rehabil; 2020 Mar; 17(1):38. PubMed ID: 32131857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study.
    Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of robotic-assisted gait training on physical capacity, and quality of life among chronic stroke patients: A randomized controlled study.
    Elmas Bodur B; Erdoğanoğlu Y; Asena Sel S
    J Clin Neurosci; 2024 Feb; 120():129-137. PubMed ID: 38241771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study.
    Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A
    Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury.
    McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C
    Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.