These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32282791)

  • 1. Improving the coverage of credible sets in Bayesian genetic fine-mapping.
    Hutchinson A; Watson H; Wallace C
    PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical joint analysis of marginal summary statistics-Part I: Multipopulation fine mapping and credible set construction.
    Shen J; Jiang L; Wang K; Wang A; Chen F; Newcombe PJ; Haiman CA; Conti DV
    Genet Epidemiol; 2024 Sep; 48(6):241-257. PubMed ID: 38606643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian fine-mapping model using a continuous global-local shrinkage prior with applications in prostate cancer analysis.
    Li X; Sham PC; Zhang YD
    Am J Hum Genet; 2024 Feb; 111(2):213-226. PubMed ID: 38171363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants.
    Karhunen V; Launonen I; Järvelin MR; Sebert S; Sillanpää MJ
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37348543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses.
    Yang Z; Wang C; Liu L; Khan A; Lee A; Vardarajan B; Mayeux R; Kiryluk K; Ionita-Laza I
    Nat Genet; 2023 Jun; 55(6):1057-1065. PubMed ID: 37169873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases.
    Kundu K; Tardaguila M; Mann AL; Watt S; Ponstingl H; Vasquez L; Von Schiller D; Morrell NW; Stegle O; Pastinen T; Sawcer SJ; Anderson CA; Walter K; Soranzo N
    Nat Genet; 2022 Mar; 54(3):251-262. PubMed ID: 35288711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification.
    Faye LL; Machiela MJ; Kraft P; Bull SB; Sun L
    PLoS Genet; 2013; 9(8):e1003609. PubMed ID: 23950724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flashfm approach for fine-mapping multiple quantitative traits.
    Hernández N; Soenksen J; Newcombe P; Sandhu M; Barroso I; Wallace C; Asimit JL
    Nat Commun; 2021 Oct; 12(1):6147. PubMed ID: 34686674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations.
    Zhang W; Najafabadi H; Li Y
    PLoS Genet; 2023 Dec; 19(12):e1011104. PubMed ID: 38153934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utility of the Laplace effect size prior distribution in Bayesian fine-mapping studies.
    Walters K; Cox A; Yaacob H
    Genet Epidemiol; 2021 Jun; 45(4):386-401. PubMed ID: 33410201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference.
    Ghosal S; Schatz MC; Venkataraman A
    bioRxiv; 2024 Sep; ():. PubMed ID: 36993396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping.
    Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW
    Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases.
    Yuan K; Longchamps RJ; Pardiñas AF; Yu M; Chen TT; Lin SC; Chen Y; Lam M; Liu R; Xia Y; Guo Z; Shi W; Shen C; ; Daly MJ; Neale BM; Feng YA; Lin YF; Chen CY; O'Donovan M; Ge T; Huang H
    medRxiv; 2023 Jul; ():. PubMed ID: 36711496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci.
    van de Bunt M; Cortes A; ; Brown MA; Morris AP; McCarthy MI
    PLoS Genet; 2015; 11(9):e1005535. PubMed ID: 26406328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection.
    Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F;
    Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of all-but-one conditional analysis for eQTL isolation in peripheral blood.
    Brown M; Greenwood E; Zeng B; Powell JE; Gibson G
    Genetics; 2023 Jan; 223(1):. PubMed ID: 36321965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of expression QTLs with fine mapping via SuSiE.
    Zhang X; Jiang W; Zhao H
    PLoS Genet; 2024 Jan; 20(1):e1010929. PubMed ID: 38271473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BEATRICE: Bayesian fine-mapping from summary data using deep variational inference.
    Ghosal S; Schatz MC; Venkataraman A
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39360993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
    Kichaev G; Yang WY; Lindstrom S; Hormozdiari F; Eskin E; Price AL; Kraft P; Pasaniuc B
    PLoS Genet; 2014 Oct; 10(10):e1004722. PubMed ID: 25357204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.