These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32282798)

  • 1. Ultralow-frequency neural entrainment to pain.
    Guo Y; Bufacchi RJ; Novembre G; Kilintari M; Moayedi M; Hu L; Iannetti GD
    PLoS Biol; 2020 Apr; 18(4):e3000491. PubMed ID: 32282798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical nociceptive processes are reduced by visual alpha-band entrainment in the human brain.
    Ecsy K; Brown CA; Jones AKP
    Eur J Pain; 2018 Mar; 22(3):538-550. PubMed ID: 29139226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli.
    Ten Oever S; Schroeder CE; Poeppel D; van Atteveldt N; Mehta AD; Mégevand P; Groppe DM; Zion-Golumbic E
    J Neurosci; 2017 May; 37(19):4903-4912. PubMed ID: 28411273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance.
    Wang D; Clouter A; Chen Q; Shapiro KL; Hanslmayr S
    J Neurosci; 2018 Jul; 38(28):6299-6309. PubMed ID: 29899027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation.
    Mathewson KE; Prudhomme C; Fabiani M; Beck DM; Lleras A; Gratton G
    J Cogn Neurosci; 2012 Dec; 24(12):2321-33. PubMed ID: 22905825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phasic Modulation of Human Somatosensory Perception by Transcranially Applied Oscillating Currents.
    Gundlach C; Müller MM; Nierhaus T; Villringer A; Sehm B
    Brain Stimul; 2016; 9(5):712-719. PubMed ID: 27237962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhythmic Modulation of Entrained Auditory Oscillations by Visual Inputs.
    Simon DM; Wallace MT
    Brain Topogr; 2017 Sep; 30(5):565-578. PubMed ID: 28341920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual cortex entrains to sign language.
    Brookshire G; Lu J; Nusbaum HC; Goldin-Meadow S; Casasanto D
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6352-6357. PubMed ID: 28559320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmically Modulating Neural Entrainment during Exposure to Regularities Influences Statistical Learning.
    Batterink LJ; Mulgrew J; Gibbings A
    J Cogn Neurosci; 2024 Jan; 36(1):107-127. PubMed ID: 37902580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Low-frequency Neural Oscillations in Speech Processing: Revisiting Delta Entrainment.
    Boucher VJ; Gilbert AC; Jemel B
    J Cogn Neurosci; 2019 Aug; 31(8):1205-1215. PubMed ID: 30990387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of neural entrainment to speech with and without slow spectral energy fluctuations in laminar recordings in monkey A1.
    Zoefel B; Costa-Faidella J; Lakatos P; Schroeder CE; VanRullen R
    Neuroimage; 2017 Apr; 150():344-357. PubMed ID: 28188912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior.
    Henry MJ; Obleser J
    Proc Natl Acad Sci U S A; 2012 Dec; 109(49):20095-100. PubMed ID: 23151506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.
    Henry MJ; Herrmann B; Obleser J
    J Neurosci; 2016 Jan; 36(3):860-71. PubMed ID: 26791216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG oscillations entrain their phase to high-level features of speech sound.
    Zoefel B; VanRullen R
    Neuroimage; 2016 Jan; 124(Pt A):16-23. PubMed ID: 26341026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling neural entrainment and its persistence: influence of frequency of stimulation and phase at the stimulus offset.
    Otero M; Lea-Carnall C; Prado P; Escobar MJ; El-Deredy W
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35320793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics.
    Zhou H; Melloni L; Poeppel D; Ding N
    Front Hum Neurosci; 2016; 10():274. PubMed ID: 27375465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficacy of sensory neural entrainment on acute and chronic pain: A systematic review and meta-analysis.
    Maddison R; Nazar H; Obara I; Vuong QC
    Br J Pain; 2023 Apr; 17(2):126-141. PubMed ID: 37057253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural entrainment via perceptual inferences.
    Tavano A; Maess B; Poeppel D; Schröger E
    Eur J Neurosci; 2022 Jun; 55(11-12):3277-3287. PubMed ID: 35193163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Entrainment in Drum Rhythms with Silent Breaks: Evidence from Steady-state Evoked and Event-related Potentials.
    Stupacher J; Witte M; Hove MJ; Wood G
    J Cogn Neurosci; 2016 Dec; 28(12):1865-1877. PubMed ID: 27458750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.