BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32282839)

  • 1. Selection favors loss of floral pigmentation in a highly selfing morning glory.
    Duncan TM; Rausher MD
    PLoS One; 2020; 15(4):e0231263. PubMed ID: 32282839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory.
    Morita Y; Saitoh M; Hoshino A; Nitasaka E; Iida S
    Plant Cell Physiol; 2006 Apr; 47(4):457-70. PubMed ID: 16446312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea.
    Coberly LC; Rausher MD
    Evolution; 2008 May; 62(5):1076-85. PubMed ID: 18298642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of variation at the flower-colour A locus on mating system parameters in Ipomoea purpurea.
    Fehr C; Rausher MD
    Mol Ecol; 2004 Jul; 13(7):1839-47. PubMed ID: 15189207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictable patterns of constraint among anthocyanin-regulating transcription factors in Ipomoea.
    Streisfeld MA; Liu D; Rausher MD
    New Phytol; 2011 Jul; 191(1):264-274. PubMed ID: 21366597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco.
    Chen K; Du L; Liu H; Liu Y
    BMC Plant Biol; 2019 Sep; 19(1):390. PubMed ID: 31500571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of anthocyanin pigmentation genes following losses of flower color.
    Ho WW; Smith SD
    BMC Evol Biol; 2016 May; 16():98. PubMed ID: 27161359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea.
    Chang SM; Lu Y; Rausher MD
    Genetics; 2005 Aug; 170(4):1967-78. PubMed ID: 15944366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation.
    Park KI; Ishikawa N; Morita Y; Choi JD; Hoshino A; Iida S
    Plant J; 2007 Feb; 49(4):641-54. PubMed ID: 17270013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species.
    Streisfeld MA; Rausher MD
    New Phytol; 2009 Aug; 183(3):751-763. PubMed ID: 19594698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxed constraint and evolutionary rate variation between basic helix-loop-helix floral anthocyanin regulators in Ipomoea.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2007 Dec; 24(12):2816-26. PubMed ID: 17921484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (Lilium spp.).
    Suzuki K; Suzuki T; Nakatsuka T; Dohra H; Yamagishi M; Matsuyama K; Matsuura H
    BMC Genomics; 2016 Aug; 17(1):611. PubMed ID: 27516339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modularity and selection of nectar traits in the evolution of the selfing syndrome in Ipomoea lacunosa (Convolvulaceae).
    Liao IT; Rifkin JL; Cao G; Rausher MD
    New Phytol; 2022 Feb; 233(3):1505-1519. PubMed ID: 34783034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic architecture of divergence: the selfing syndrome in Ipomoea lacunosa.
    Rifkin JL; Cao G; Rausher MD
    Am J Bot; 2021 Oct; 108(10):2038-2054. PubMed ID: 34648660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea.
    Johzuka-Hisatomi Y; Noguchi H; Iida S
    J Plant Res; 2011 Mar; 124(2):299-304. PubMed ID: 20680382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories.
    Iida S; Morita Y; Choi JD; Park KI; Hoshino A
    Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma.
    Gates DJ; Olson BJSC; Clemente TE; Smith SD
    New Phytol; 2018 Feb; 217(3):1346-1356. PubMed ID: 29023752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus).
    Yuan YW; Sagawa JM; Frost L; Vela JP; Bradshaw HD
    New Phytol; 2014 Dec; 204(4):1013-27. PubMed ID: 25103615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata).
    Campitelli BE; Kenney AM; Hopkins R; Soule J; Lovell JT; Juenger TE
    Mol Biol Evol; 2018 Apr; 35(4):807-822. PubMed ID: 29253197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp.
    Yamagishi M
    Mol Genet Genomics; 2021 Jul; 296(4):1005-1015. PubMed ID: 34052932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.