BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32282839)

  • 21. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.
    Hsu CC; Chen YY; Tsai WC; Chen WH; Chen HH
    Plant Physiol; 2015 May; 168(1):175-91. PubMed ID: 25739699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A WD40-repeat protein controls proanthocyanidin and phytomelanin pigmentation in the seed coats of the Japanese morning glory.
    Park KI; Hoshino A
    J Plant Physiol; 2012 Mar; 169(5):523-8. PubMed ID: 22209168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.).
    Yamagishi M; Toda S; Tasaki K
    New Phytol; 2014 Feb; 201(3):1009-1020. PubMed ID: 24180488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae).
    Lin RC; Rausher MD
    New Phytol; 2021 Jan; 229(2):1147-1162. PubMed ID: 32880946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The identification of an R2R3-MYB transcription factor involved in regulating anthocyanin biosynthesis in Primulina swinglei flowers.
    Feng C; Ding D; Feng C; Kang M
    Gene; 2020 Aug; 752():144788. PubMed ID: 32439375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Floral pigmentation pattern in Oriental hybrid lily (Lilium spp.) cultivar 'Dizzy' is caused by transcriptional regulation of anthocyanin biosynthesis genes.
    Yamagishi M; Uchiyama H; Handa T
    J Plant Physiol; 2018 Sep; 228():85-91. PubMed ID: 29879604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus.
    Streisfeld MA; Young WN; Sobel JM
    PLoS Genet; 2013 Mar; 9(3):e1003385. PubMed ID: 23555295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Transcriptomics Provides Insight into Floral Color Polymorphism in a
    Zhang Y; Zhou T; Dai Z; Dai X; Li W; Cao M; Li C; Tsai WC; Wu X; Zhai J; Liu Z; Wu S
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae).
    Su S; Xiao W; Guo W; Yao X; Xiao J; Ye Z; Wang N; Jiao K; Lei M; Peng Q; Hu X; Huang X; Luo D
    New Phytol; 2017 Sep; 215(4):1582-1593. PubMed ID: 28691160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple aspects of the selfing syndrome of the morning glory
    Rifkin JL; Liao IT; Castillo AS; Rausher MD
    Ecol Evol; 2019 Jul; 9(13):7712-7725. PubMed ID: 31346434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An R2R3-MYB Transcriptional Factor
    Guo D; Jiang H; Xie L
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum.
    Shang Y; Venail J; Mackay S; Bailey PC; Schwinn KE; Jameson PE; Martin CR; Davies KM
    New Phytol; 2011 Jan; 189(2):602-15. PubMed ID: 21039563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic basis for a rare floral mutant in an Andean species of Solanaceae.
    Coburn RA; Griffin RH; Smith SD
    Am J Bot; 2015 Feb; 102(2):264-72. PubMed ID: 25667079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection through male function favors smaller floral display size in the common morning glory Ipomoea purpurea (Convolvulaceae).
    Lau JA; Miller RE; Rausher MD
    Am Nat; 2008 Jul; 172(1):63-74. PubMed ID: 18507519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.
    Yuan YW; Rebocho AB; Sagawa JM; Stanley LE; Bradshaw HD
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2448-53. PubMed ID: 26884205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental evidence that selection favors character displacement in the ivyleaf morning glory.
    Smith RA; Rausher MD
    Am Nat; 2008 Jan; 171(1):1-9. PubMed ID: 18171146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide sequence diversity of floral pigment genes in Mexican populations of Ipomoea purpurea (morning glory) accord with a neutral model of evolution.
    Gonzales AM; Fang Z; Durbin ML; Meyer KK; Clegg MT; Morrell PL
    J Hered; 2012; 103(6):863-72. PubMed ID: 23091224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum.
    Schwinn K; Venail J; Shang Y; Mackay S; Alm V; Butelli E; Oyama R; Bailey P; Davies K; Martin C
    Plant Cell; 2006 Apr; 18(4):831-51. PubMed ID: 16531495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of the selfing syndrome in Ipomoea.
    Duncan TM; Rausher MD
    Front Plant Sci; 2013; 4():301. PubMed ID: 23950758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor.
    Park KI; Choi JD; Hoshino A; Morita Y; Iida S
    Plant J; 2004 Jun; 38(5):840-9. PubMed ID: 15144384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.