These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32282885)
1. CScape-somatic: distinguishing driver and passenger point mutations in the cancer genome. Rogers MF; Gaunt TR; Campbell C Bioinformatics; 2020 Jun; 36(12):3637-3644. PubMed ID: 32282885 [TBL] [Abstract][Full Text] [Related]
2. CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. Rogers MF; Shihab HA; Gaunt TR; Campbell C Sci Rep; 2017 Sep; 7(1):11597. PubMed ID: 28912487 [TBL] [Abstract][Full Text] [Related]
3. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C Bioinformatics; 2018 Feb; 34(3):511-513. PubMed ID: 28968714 [TBL] [Abstract][Full Text] [Related]
4. Predicting the functional consequences of cancer-associated amino acid substitutions. Shihab HA; Gough J; Cooper DN; Day IN; Gaunt TR Bioinformatics; 2013 Jun; 29(12):1504-10. PubMed ID: 23620363 [TBL] [Abstract][Full Text] [Related]
5. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes. Nono AD; Chen K; Liu X BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472 [TBL] [Abstract][Full Text] [Related]
6. PRESM: personalized reference editor for somatic mutation discovery in cancer genomics. Cao C; Mak L; Jin G; Gordon P; Ye K; Long Q Bioinformatics; 2019 May; 35(9):1445-1452. PubMed ID: 30247633 [TBL] [Abstract][Full Text] [Related]
8. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Rheinbay E; Nielsen MM; Abascal F; Wala JA; Shapira O; Tiao G; Hornshøj H; Hess JM; Juul RI; Lin Z; Feuerbach L; Sabarinathan R; Madsen T; Kim J; Mularoni L; Shuai S; Lanzós A; Herrmann C; Maruvka YE; Shen C; Amin SB; Bandopadhayay P; Bertl J; Boroevich KA; Busanovich J; Carlevaro-Fita J; Chakravarty D; Chan CWY; Craft D; Dhingra P; Diamanti K; Fonseca NA; Gonzalez-Perez A; Guo Q; Hamilton MP; Haradhvala NJ; Hong C; Isaev K; Johnson TA; Juul M; Kahles A; Kahraman A; Kim Y; Komorowski J; Kumar K; Kumar S; Lee D; Lehmann KV; Li Y; Liu EM; Lochovsky L; Park K; Pich O; Roberts ND; Saksena G; Schumacher SE; Sidiropoulos N; Sieverling L; Sinnott-Armstrong N; Stewart C; Tamborero D; Tubio JMC; Umer HM; Uusküla-Reimand L; Wadelius C; Wadi L; Yao X; Zhang CZ; Zhang J; Haber JE; Hobolth A; Imielinski M; Kellis M; Lawrence MS; von Mering C; Nakagawa H; Raphael BJ; Rubin MA; Sander C; Stein LD; Stuart JM; Tsunoda T; Wheeler DA; Johnson R; Reimand J; Gerstein M; Khurana E; Campbell PJ; López-Bigas N; ; ; Weischenfeldt J; Beroukhim R; Martincorena I; Pedersen JS; Getz G; Nature; 2020 Feb; 578(7793):102-111. PubMed ID: 32025015 [TBL] [Abstract][Full Text] [Related]
9. Ensemble-Based Somatic Mutation Calling in Cancer Genomes. Huang W; Guo YA; Chang MM; Skanderup AJ Methods Mol Biol; 2020; 2120():37-46. PubMed ID: 32124310 [TBL] [Abstract][Full Text] [Related]
10. An Individualized Approach for Somatic Variant Discovery. Li M; He T; Cao C; Long Q Methods Mol Biol; 2020; 2120():11-36. PubMed ID: 32124309 [TBL] [Abstract][Full Text] [Related]
11. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Larson DE; Harris CC; Chen K; Koboldt DC; Abbott TE; Dooling DJ; Ley TJ; Mardis ER; Wilson RK; Ding L Bioinformatics; 2012 Feb; 28(3):311-7. PubMed ID: 22155872 [TBL] [Abstract][Full Text] [Related]
12. Computational Prediction of the Pathogenic Status of Cancer-Specific Somatic Variants. Feizi N; Liu Q; Murphy L; Hu P Front Genet; 2021; 12():805656. PubMed ID: 35116056 [No Abstract] [Full Text] [Related]
13. SomaticSeq: An Ensemble and Machine Learning Method to Detect Somatic Mutations. Fang LT Methods Mol Biol; 2020; 2120():47-70. PubMed ID: 32124311 [TBL] [Abstract][Full Text] [Related]
14. CScape-somatic: distinguishing driver and passenger point mutations in the cancer genome. Rogers MF; Gaunt TR; Campbell C Bioinformatics; 2021 Nov; 37(22):4298. PubMed ID: 34695181 [No Abstract] [Full Text] [Related]
15. Detection of oncogenic and clinically actionable mutations in cancer genomes critically depends on variant calling tools. Garcia-Prieto CA; Martínez-Jiménez F; Valencia A; Porta-Pardo E Bioinformatics; 2022 Jun; 38(12):3181-3191. PubMed ID: 35512388 [TBL] [Abstract][Full Text] [Related]
16. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification. Tan H; Bao J; Zhou X Bioinformatics; 2012 Nov; 28(22):2948-55. PubMed ID: 23044540 [TBL] [Abstract][Full Text] [Related]
17. Identification of coding and non-coding mutational hotspots in cancer genomes. Piraino SW; Furney SJ BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774 [TBL] [Abstract][Full Text] [Related]
18. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. Merid SK; Goranskaya D; Alexeyenko A BMC Bioinformatics; 2014 Sep; 15(1):308. PubMed ID: 25236784 [TBL] [Abstract][Full Text] [Related]
19. Beyond the exome: the role of non-coding somatic mutations in cancer. Piraino SW; Furney SJ Ann Oncol; 2016 Feb; 27(2):240-8. PubMed ID: 26598542 [TBL] [Abstract][Full Text] [Related]
20. A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events. Li J; Poursat MA; Drubay D; Motz A; Saci Z; Morillon A; Michiels S; Gautheret D PLoS Comput Biol; 2015 Nov; 11(11):e1004583. PubMed ID: 26588488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]