These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 32282915)
21. Characterization of the complete plastome of Wu R; Yu C; Wu Y Mitochondrial DNA B Resour; 2021 Jan; 6(1):58-59. PubMed ID: 33521266 [No Abstract] [Full Text] [Related]
22. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Guo W; Grewe F; Cobo-Clark A; Fan W; Duan Z; Adams RP; Schwarzbach AE; Mower JP Genome Biol Evol; 2014 Mar; 6(3):580-90. PubMed ID: 24586030 [TBL] [Abstract][Full Text] [Related]
23. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution. Greiner S; Wang X; Rauwolf U; Silber MV; Mayer K; Meurer J; Haberer G; Herrmann RG Nucleic Acids Res; 2008 Apr; 36(7):2366-78. PubMed ID: 18299283 [TBL] [Abstract][Full Text] [Related]
24. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats. Cao J; Wang H; Cao Y; Kan S; Li J; Liu Y Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396955 [TBL] [Abstract][Full Text] [Related]
25. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine. Hsu CY; Wu CS; Chaw SM Genome Biol Evol; 2016 Jun; 8(6):1776-84. PubMed ID: 27269365 [TBL] [Abstract][Full Text] [Related]
26. Does IR-loss promote plastome structural variation and sequence evolution? Wang ZX; Wang DJ; Yi TS Front Plant Sci; 2022; 13():888049. PubMed ID: 36247567 [TBL] [Abstract][Full Text] [Related]
27. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Kuang DY; Wu H; Wang YL; Gao LM; Zhang SZ; Lu L Genome; 2011 Aug; 54(8):663-73. PubMed ID: 21793699 [TBL] [Abstract][Full Text] [Related]
28. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. Köhler M; Reginato M; Souza-Chies TT; Majure LC Front Plant Sci; 2020; 11():729. PubMed ID: 32636853 [TBL] [Abstract][Full Text] [Related]
29. Lycophyte plastid genomics: extreme variation in GC, gene and intron content and multiple inversions between a direct and inverted orientation of the rRNA repeat. Mower JP; Ma PF; Grewe F; Taylor A; Michael TP; VanBuren R; Qiu YL New Phytol; 2019 Apr; 222(2):1061-1075. PubMed ID: 30556907 [TBL] [Abstract][Full Text] [Related]
30. Mycoheterotrophic Epirixanthes (Polygalaceae) has a typical angiosperm mitogenome but unorthodox plastid genomes. Petersen G; Darby H; Lam VKY; Pedersen HÆ; Merckx VSFT; Zervas A; Seberg O; Graham SW Ann Bot; 2019 Nov; 124(5):791-807. PubMed ID: 31346602 [TBL] [Abstract][Full Text] [Related]
31. Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. Yano O; Katsuyama T; Tsubota H; Hoshino T J Plant Res; 2004 Oct; 117(5):409-19. PubMed ID: 15372307 [TBL] [Abstract][Full Text] [Related]
32. Conservation and innovation: Plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau. Zhao DN; Ren Y; Zhang JQ Mol Phylogenet Evol; 2020 Mar; 144():106713. PubMed ID: 31863901 [TBL] [Abstract][Full Text] [Related]
33. Understanding evolution in Poales: Insights from Eriocaulaceae plastome. Darshetkar AM; Datar MN; Tamhankar S; Li P; Choudhary RK PLoS One; 2019; 14(8):e0221423. PubMed ID: 31430346 [TBL] [Abstract][Full Text] [Related]
34. Chloroplast Genomes of Two Species of Guo YY; Yang JX; Li HK; Zhao HS Front Plant Sci; 2021; 12():609729. PubMed ID: 33633763 [TBL] [Abstract][Full Text] [Related]
35. Evolutionary Patterns of the Chloroplast Genome in Vanilloid Orchids (Vanilloideae, Orchidaceae). Kim YK; Cheon SH; Hong JR; Kim KJ Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835219 [TBL] [Abstract][Full Text] [Related]
36. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. de Souza TB; Chaluvadi SR; Johnen L; Marques A; González-Elizondo MS; Bennetzen JL; Vanzela ALL Ann Bot; 2018 Aug; 122(2):279-290. PubMed ID: 30084890 [TBL] [Abstract][Full Text] [Related]
37. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae. Szczecińska M; Sawicki J Int J Mol Sci; 2015 Sep; 16(9):22258-79. PubMed ID: 26389887 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of water chestnut Soymovirus-1 (WCSV-1), a novel Soymovirus in water chestnuts (Eleocharis dulcis). Zhang F; Yang Z; Hong N; Wang G; Wang A; Wang L BMC Plant Biol; 2019 Apr; 19(1):159. PubMed ID: 31023231 [TBL] [Abstract][Full Text] [Related]
39. Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion. Wu CS; Chaw SM Genome Biol Evol; 2015 Jun; 7(7):2000-9. PubMed ID: 26116919 [TBL] [Abstract][Full Text] [Related]
40. Gene loss and genome rearrangement in the plastids of five Hemiparasites in the family Orobanchaceae. Frailey DC; Chaluvadi SR; Vaughn JN; Coatney CG; Bennetzen JL BMC Plant Biol; 2018 Feb; 18(1):30. PubMed ID: 29409454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]