These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 32283091)
81. Superior reproductive success on human blood without sugar is not limited to highly anthropophilic mosquito species. Braks MA; Juliano SA; Lounibos LP Med Vet Entomol; 2006 Mar; 20(1):53-9. PubMed ID: 16608490 [TBL] [Abstract][Full Text] [Related]
82. Use of mechanical and behavioural methods to eliminate female Aedes aegypti and Aedes albopictus for sterile insect technique and incompatible insect technique applications. Gunathilaka N; Ranathunge T; Udayanga L; Wijegunawardena A; Gilles JRL; Abeyewickreme W Parasit Vectors; 2019 Mar; 12(1):148. PubMed ID: 30922368 [TBL] [Abstract][Full Text] [Related]
83. Blood-feeding drive inhibition of Aedes sierrensis (Diptera: Culicidae) induced by the parasite Lambornella clarki (Ciliophora: Tetrahymenidae). Egerter DE; Anderson JR J Med Entomol; 1989 Jan; 26(1):46-54. PubMed ID: 2926775 [TBL] [Abstract][Full Text] [Related]
84. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti). Stell FM; Roe RM; Arellano C; Kennedy L; Thornton H; Saavedra-Rodriguez K; Wesson DM; Black WC; Apperson CS Med Vet Entomol; 2013 Sep; 27(3):284-97. PubMed ID: 23077986 [TBL] [Abstract][Full Text] [Related]
85. Behavioural response of mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus to synthetic pyrethroid and organophosphorus-based slow-release insecticidal paint. Dhiman S; Yadav K; Acharya BN; Ahirwar RK; Sukumaran D Parasit Vectors; 2021 May; 14(1):259. PubMed ID: 34001242 [TBL] [Abstract][Full Text] [Related]
86. Membrane feeding of dengue patient's blood as a substitute for direct skin feeding in studying Aedes-dengue virus interaction. Tan CH; Wong PS; Li MZ; Yang HT; Chong CS; Lee LK; Yuan S; Leo YS; Ng LC; Lye DC Parasit Vectors; 2016 Apr; 9():211. PubMed ID: 27083158 [TBL] [Abstract][Full Text] [Related]
87. Simultaneous field comparison of evening temporal distributions of nectar and blood feeding by Aedes vexans and Ae. trivittatus (Diptera: Culicidae) in Ohio. Yee WL; Foster WA; Howe MJ; Hancock RG J Med Entomol; 1992 Mar; 29(2):356-60. PubMed ID: 1495059 [TBL] [Abstract][Full Text] [Related]
88. Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictus. Kawada H; Takemura SY; Arikawa K; Takagi M J Med Entomol; 2005 May; 42(3):312-8. PubMed ID: 15962780 [TBL] [Abstract][Full Text] [Related]
89. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. Nasci RS J Am Mosq Control Assoc; 1986 Mar; 2(1):61-2. PubMed ID: 3507471 [TBL] [Abstract][Full Text] [Related]
90. Florida Aedes aegypti (Diptera: Culicidae) and Aedes albopictus Vector Competency for Zika Virus. Zimler RA; Alto BW J Med Entomol; 2019 Feb; 56(2):341-346. PubMed ID: 30668772 [TBL] [Abstract][Full Text] [Related]
92. Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Barredo E; Raji JI; Ramon M; DeGennaro M; Theobald J Biol Lett; 2022 Sep; 18(9):20220270. PubMed ID: 36166270 [TBL] [Abstract][Full Text] [Related]
93. Evaluation of "Caserotek" a low cost and effective artificial blood-feeding device for mosquitoes. Astete H; Briesemeister V; Campos C; Puertas A; Scott TW; López-Sifuentes V; Larson R; Fisher M; Vásquez GM; Escobedo-Vargas K; Morrison AC PLoS Negl Trop Dis; 2023 Aug; 17(8):e0011563. PubMed ID: 37624854 [TBL] [Abstract][Full Text] [Related]
94. Effectiveness of a New Self-Marking Technique in Diouf G; Seck MT; Fall AG; Bassène MD; Biteye B; Bakhoum MT; Ciss M Insects; 2022 Apr; 13(4):. PubMed ID: 35447821 [TBL] [Abstract][Full Text] [Related]
95. Automated analysis of feeding behaviors of females of the mosquito Aedes aegypti using a modified flyPAD system. Henriques-Santos BM; Xiong C; Pietrantonio PV Sci Rep; 2023 Nov; 13(1):20188. PubMed ID: 37980438 [TBL] [Abstract][Full Text] [Related]
96. Acoustic-Related Mating Behavior in Tethered and Free-Flying Mosquitoes. League GP; Alfonso-Parra C; Pantoja-Sánchez H; Harrington LC Cold Spring Harb Protoc; 2022 Oct; 2022(10):Pdb.top107667. PubMed ID: 35960619 [TBL] [Abstract][Full Text] [Related]
97. A persistent behavioral state enables sustained predation of humans by mosquitoes. Sorrells TR; Pandey A; Rosas-Villegas A; Vosshall LB Elife; 2022 May; 11():. PubMed ID: 35550041 [TBL] [Abstract][Full Text] [Related]
98. Landing mosquitoes bounce when engaging a substrate. Smith NM; Balsalobre JB; Doshi M; Willenberg BJ; Dickerson AK Sci Rep; 2020 Sep; 10(1):15744. PubMed ID: 32978447 [TBL] [Abstract][Full Text] [Related]
99. Conducting an Analysis of Mosquito Flight Behaviors in a Wind Tunnel. Alonso San Alberto D; Rusch C; Riffell JA Cold Spring Harb Protoc; 2024 Jun; 2024(6):pdb.prot108257. PubMed ID: 37137568 [TBL] [Abstract][Full Text] [Related]
100. FlightTrackAI: a robust convolutional neural network-based tool for tracking the flight behaviour of Javed N; López-Denman AJ; Paradkar PN; Bhatti A R Soc Open Sci; 2024 Oct; 11(10):240923. PubMed ID: 39359469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]