These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 32283204)

  • 1. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD.
    Zhu J; Mallia P; Footitt J; Qiu Y; Message SD; Kebadze T; Aniscenko J; Barnes PJ; Adcock IM; Kon OM; Johnson M; Contoli M; Stanciu LA; Papi A; Jeffery PK; Johnston SL
    J Allergy Clin Immunol; 2020 Oct; 146(4):840-850.e7. PubMed ID: 32283204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative and Nitrosative Stress and Histone Deacetylase-2 Activity in Exacerbations of COPD.
    Footitt J; Mallia P; Durham AL; Ho WE; Trujillo-Torralbo MB; Telcian AG; Del Rosario A; Chang C; Peh HY; Kebadze T; Aniscenko J; Stanciu L; Essilfie-Quaye S; Ito K; Barnes PJ; Elkin SL; Kon OM; Wong WS; Adcock IM; Johnston SL
    Chest; 2016 Jan; 149(1):62-73. PubMed ID: 25790167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airway inflammation and illness severity in response to experimental rhinovirus infection in asthma.
    Zhu J; Message SD; Qiu Y; Mallia P; Kebadze T; Contoli M; Ward CK; Barnathan ES; Mascelli MA; Kon OM; Papi A; Stanciu LA; Jeffery PK; Johnston SL
    Chest; 2014 Jun; 145(6):1219-1229. PubMed ID: 24457412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease.
    Mallia P; Footitt J; Sotero R; Jepson A; Contoli M; Trujillo-Torralbo MB; Kebadze T; Aniscenko J; Oleszkiewicz G; Gray K; Message SD; Ito K; Barnes PJ; Adcock IM; Papi A; Stanciu LA; Elkin SL; Kon OM; Johnson M; Johnston SL
    Am J Respir Crit Care Med; 2012 Dec; 186(11):1117-24. PubMed ID: 23024024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation.
    Mallia P; Message SD; Gielen V; Contoli M; Gray K; Kebadze T; Aniscenko J; Laza-Stanca V; Edwards MR; Slater L; Papi A; Stanciu LA; Kon OM; Johnson M; Johnston SL
    Am J Respir Crit Care Med; 2011 Mar; 183(6):734-42. PubMed ID: 20889904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD.
    Baines KJ; Hsu AC; Tooze M; Gunawardhana LP; Gibson PG; Wark PA
    Respir Res; 2013 Feb; 14(1):15. PubMed ID: 23384071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human rhinovirus proteinase 2A induces TH1 and TH2 immunity in patients with chronic obstructive pulmonary disease.
    Singh M; Lee SH; Porter P; Xu C; Ohno A; Atmar RL; Greenberg SB; Bandi V; Gern J; Amineva S; Aminev A; Skern T; Smithwick P; Perusich S; Barrow N; Roberts L; Corry DB; Kheradmand F
    J Allergy Clin Immunol; 2010 Jun; 125(6):1369-1378.e2. PubMed ID: 20430426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis.
    Gamble E; Grootendorst DC; Hattotuwa K; O'Shaughnessy T; Ram FS; Qiu Y; Zhu J; Vignola AM; Kroegel C; Morell F; Pavord ID; Rabe KF; Jeffery PK; Barnes NC
    Eur Respir J; 2007 Sep; 30(3):467-71. PubMed ID: 17504799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quercetin prevents rhinovirus-induced progression of lung disease in mice with COPD phenotype.
    Farazuddin M; Mishra R; Jing Y; Srivastava V; Comstock AT; Sajjan US
    PLoS One; 2018; 13(7):e0199612. PubMed ID: 29975735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease.
    Mallia P; Message SD; Contoli M; Gray K; Telcian A; Laza-Stanca V; Papi A; Stanciu LA; Elkin S; Kon OM; Johnson M; Johnston SL
    Respir Med; 2014 Jan; 108(1):78-85. PubMed ID: 24099891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood cell for the differentiation of airway inflammatory phenotypes in COPD exacerbations.
    Gao J; Chen B; Wu S; Wu F
    BMC Pulm Med; 2020 Feb; 20(1):50. PubMed ID: 32093672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between Blood and Induced Sputum Eosinophils, Bronchial Hyperresponsiveness and Reversibility of Airway Obstruction in Mild-to-Moderate Chronic Obstructive Pulmonary Disease.
    Proboszcz M; Mycroft K; Paplinska-Goryca M; Górska K; Nejman-Gryz P; Jankowski P; Zak N; Krenke R
    COPD; 2019 Dec; 16(5-6):354-361. PubMed ID: 31631716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative Stress Attenuates TLR3 Responsiveness and Impairs Anti-viral Mechanisms in Bronchial Epithelial Cells From COPD and Asthma Patients.
    Menzel M; Ramu S; Calvén J; Olejnicka B; Sverrild A; Porsbjerg C; Tufvesson E; Bjermer L; Akbarshahi H; Uller L
    Front Immunol; 2019; 10():2765. PubMed ID: 31849956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiviral immunity is impaired in COPD patients with frequent exacerbations.
    Singanayagam A; Loo SL; Calderazzo M; Finney LJ; Trujillo Torralbo MB; Bakhsoliani E; Girkin J; Veerati P; Pathinayake PS; Nichol KS; Reid A; Footitt J; Wark PAB; Grainge CL; Johnston SL; Bartlett NW; Mallia P
    Am J Physiol Lung Cell Mol Physiol; 2019 Dec; 317(6):L893-L903. PubMed ID: 31513433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations.
    Zhu J; Message SD; Mallia P; Kebadze T; Contoli M; Ward CK; Barnathan ES; Mascelli MA; Kon OM; Papi A; Stanciu LA; Edwards MR; Jeffery PK; Johnston SL
    J Allergy Clin Immunol; 2019 Jan; 143(1):114-125.e4. PubMed ID: 29698627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations.
    Papi A; Bellettato CM; Braccioni F; Romagnoli M; Casolari P; Caramori G; Fabbri LM; Johnston SL
    Am J Respir Crit Care Med; 2006 May; 173(10):1114-21. PubMed ID: 16484677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental rhinovirus infection in COPD: implications for antiviral therapies.
    Gunawardana N; Finney L; Johnston SL; Mallia P
    Antiviral Res; 2014 Feb; 102():95-105. PubMed ID: 24370732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus.
    Skevaki CL; Christodoulou I; Spyridaki IS; Tiniakou I; Georgiou V; Xepapadaki P; Kafetzis DA; Papadopoulos NG
    Clin Exp Allergy; 2009 Nov; 39(11):1700-10. PubMed ID: 19549024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower airway rhinovirus burden and the seasonal risk of asthma exacerbation.
    Denlinger LC; Sorkness RL; Lee WM; Evans MD; Wolff MJ; Mathur SK; Crisafi GM; Gaworski KL; Pappas TE; Vrtis RF; Kelly EA; Gern JE; Jarjour NN
    Am J Respir Crit Care Med; 2011 Nov; 184(9):1007-14. PubMed ID: 21816938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azithromycin augments rhinovirus-induced IFNβ via cytosolic MDA5 in experimental models of asthma exacerbation.
    Menzel M; Akbarshahi H; Tufvesson E; Persson C; Bjermer L; Uller L
    Oncotarget; 2017 May; 8(19):31601-31611. PubMed ID: 28415826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.