These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32283211)
1. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan‑zinc-insulin complexes incorporated in thermosensitive copolymer. Sharma D; Singh J J Control Release; 2020 Jul; 323():161-178. PubMed ID: 32283211 [TBL] [Abstract][Full Text] [Related]
2. Chitosan-zinc-insulin complex incorporated thermosensitive polymer for controlled delivery of basal insulin in vivo. Oak M; Singh J J Control Release; 2012 Oct; 163(2):145-53. PubMed ID: 22902516 [TBL] [Abstract][Full Text] [Related]
3. Smart Thermosensitive Copolymer Incorporating Chitosan-Zinc-Insulin Electrostatic Complexes for Controlled Delivery of Insulin: Effect of Chitosan Chain Length. Sharma D; Arora S; Singh J Int J Polym Mater; 2020; 69(16):1054-1068. PubMed ID: 33012880 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Kwon YM; Kim SW Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317 [TBL] [Abstract][Full Text] [Related]
5. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats. Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336 [TBL] [Abstract][Full Text] [Related]
6. Preparation, in vitro and in vivo evaluation of PLGA/Chitosan based nano-complex as a novel insulin delivery formulation. Mohammadpour F; Hadizadeh F; Tafaghodi M; Sadri K; Mohammadpour AH; Kalani MR; Gholami L; Mahmoudi A; Chamani J Int J Pharm; 2019 Dec; 572():118710. PubMed ID: 31629731 [TBL] [Abstract][Full Text] [Related]
7. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Choi S; Baudys M; Kim SW Pharm Res; 2004 May; 21(5):827-31. PubMed ID: 15180341 [TBL] [Abstract][Full Text] [Related]
8. Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations: An Evidence-Based Analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2009; 9(20):1-58. PubMed ID: 23074525 [TBL] [Abstract][Full Text] [Related]
9. Controlled delivery of basal level of insulin from chitosan-zinc-insulin-complex-loaded thermosensitive copolymer. Oak M; Singh J J Pharm Sci; 2012 Mar; 101(3):1079-96. PubMed ID: 22095295 [TBL] [Abstract][Full Text] [Related]
10. Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Choi S; Kim SW Pharm Res; 2003 Dec; 20(12):2008-10. PubMed ID: 14725367 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of polyanhydride microspheres for basal insulin delivery: Effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats. Manoharan C; Singh J J Pharm Sci; 2009 Nov; 98(11):4237-50. PubMed ID: 19472196 [TBL] [Abstract][Full Text] [Related]
12. In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Chu MK; Gordijo CR; Li J; Abbasi AZ; Giacca A; Plettenburg O; Wu XY Diabetes Technol Ther; 2015 Apr; 17(4):255-67. PubMed ID: 25671341 [TBL] [Abstract][Full Text] [Related]
13. Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. Banerjee A; Sharma D; Trivedi R; Singh J Int J Pharm; 2020 Jun; 583():119357. PubMed ID: 32334065 [TBL] [Abstract][Full Text] [Related]
14. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin. Al-Tahami K; Oak M; Singh J J Pharm Sci; 2011 Jun; 100(6):2161-71. PubMed ID: 21491440 [TBL] [Abstract][Full Text] [Related]
15. Influence of glucosamine on the bioactivity of insulin delivered subcutaneously and in an oral nanodelivery system. Al-Kurdi ZI; Chowdhry BZ; Leharne SA; Qinna NA; Al Omari MM; Badwan AA Drug Des Devel Ther; 2015; 9():6167-76. PubMed ID: 26640369 [TBL] [Abstract][Full Text] [Related]
16. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review. Matsuda E; Brennan P JBI Libr Syst Rev; 2012; 10(42 Suppl):1-10. PubMed ID: 27820140 [TBL] [Abstract][Full Text] [Related]
17. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery. Song L; Zhi ZL; Pickup JC Int J Nanomedicine; 2014; 9():2127-36. PubMed ID: 24833901 [TBL] [Abstract][Full Text] [Related]
18. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation. Chou HS; Larsson M; Hsiao MH; Chen YC; Röding M; Nydén M; Liu DM J Control Release; 2016 Feb; 224():33-42. PubMed ID: 26723525 [TBL] [Abstract][Full Text] [Related]
19. Addition of neutral protamine lispro insulin or insulin glargine to oral type 2 diabetes regimens for patients with suboptimal glycemic control: a randomized trial. Esposito K; Ciotola M; Maiorino MI; Gualdiero R; Schisano B; Ceriello A; Beneduce F; Feola G; Giugliano D Ann Intern Med; 2008 Oct; 149(8):531-9. PubMed ID: 18936501 [TBL] [Abstract][Full Text] [Related]
20. Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices. Li J; Chu MK; Lu B; Mirzaie S; Chen K; Gordijo CR; Plettenburg O; Giacca A; Wu XY Drug Deliv Transl Res; 2017 Aug; 7(4):529-543. PubMed ID: 28429276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]