These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32283277)

  • 1. Higher performers upregulate brain signal variability in response to more feature-rich visual input.
    Garrett DD; Epp SM; Kleemeyer M; Lindenberger U; Polk TA
    Neuroimage; 2020 Aug; 217():116836. PubMed ID: 32283277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expectation and surprise determine neural population responses in the ventral visual stream.
    Egner T; Monti JM; Summerfield C
    J Neurosci; 2010 Dec; 30(49):16601-8. PubMed ID: 21147999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociating task performance from fMRI repetition attenuation in ventral visual cortex.
    Xu Y; Turk-Browne NB; Chun MM
    J Neurosci; 2007 May; 27(22):5981-5. PubMed ID: 17537969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of beta-amyloid on face processing in young and old adults: A multivariate analysis of the BOLD signal.
    Rieck JR; Rodrigue KM; Kennedy KM; Devous MD; Park DC
    Hum Brain Mapp; 2015 Jul; 36(7):2514-26. PubMed ID: 25832770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modulation of BOLD variability between cognitive states varies by age and processing speed.
    Garrett DD; Kovacevic N; McIntosh AR; Grady CL
    Cereb Cortex; 2013 Mar; 23(3):684-93. PubMed ID: 22419679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive control modulates preferential sensory processing of affective stimuli.
    Steinhauser M; Flaisch T; Meinzer M; Schupp HT
    Neuropsychologia; 2016 Oct; 91():435-443. PubMed ID: 27619004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.
    Armbruster-Genç DJ; Ueltzhöffer K; Fiebach CJ
    J Neurosci; 2016 Apr; 36(14):3978-87. PubMed ID: 27053205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process and domain specificity in regions engaged for face processing: an fMRI study of perceptual differentiation.
    Collins HR; Zhu X; Bhatt RS; Clark JD; Joseph JE
    J Cogn Neurosci; 2012 Dec; 24(12):2428-44. PubMed ID: 22849402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Face-Specific Activity in the Ventral Stream Visual Cortex Linked to Conscious Face Perception.
    Li W; Cao D; Li J; Jiang T
    Neurosci Bull; 2024 Oct; 40(10):1434-1444. PubMed ID: 38457111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An fMRI study of the functional distinction of neuronal circuits at the sites on ventral visual stream co-activated by visual stimuli of different objects.
    Sung YW; Kamba M; Ogawa S
    Exp Brain Res; 2007 Aug; 181(4):657-63. PubMed ID: 17486323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal limitations in object processing across the human ventral visual pathway.
    McKeeff TJ; Remus DA; Tong F
    J Neurophysiol; 2007 Jul; 98(1):382-93. PubMed ID: 17493920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Priority Map of Face Images in Human Early Visual Cortex.
    Mo C; He D; Fang F
    J Neurosci; 2018 Jan; 38(1):149-157. PubMed ID: 29133433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining neural signals in human visual cortex with an associative learning model.
    Jiang J; Schmajuk N; Egner T
    Behav Neurosci; 2012 Aug; 126(4):575-81. PubMed ID: 22845706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces.
    Liu L; Ioannides AA
    Neuroimage; 2006 Jul; 31(4):1726-40. PubMed ID: 16564185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal tuning properties along the human ventral visual stream.
    Gauthier B; Eger E; Hesselmann G; Giraud AL; Kleinschmidt A
    J Neurosci; 2012 Oct; 32(41):14433-41. PubMed ID: 23055513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of Maximally Regular Textures in Human Visual Cortex.
    Kohler PJ; Clarke A; Yakovleva A; Liu Y; Norcia AM
    J Neurosci; 2016 Jan; 36(3):714-29. PubMed ID: 26791203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L
    Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence.
    Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL
    Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal tuning for faces originates in high-level Fusiform Face Area.
    Goffaux V; Duecker F; Hausfeld L; Schiltz C; Goebel R
    Neuropsychologia; 2016 Jan; 81():1-11. PubMed ID: 26683383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.