These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32283330)

  • 41. X-ray structure of a tetranucleosome and its implications for the chromatin fibre.
    Schalch T; Duda S; Sargent DF; Richmond TJ
    Nature; 2005 Jul; 436(7047):138-41. PubMed ID: 16001076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic chromatin: concerted nucleosome remodelling and acetylation.
    Eberharter A; Ferreira R; Becker P
    Biol Chem; 2005 Aug; 386(8):745-51. PubMed ID: 16201869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Condensed but liquid-like domain organization of active chromatin regions in living human cells.
    Nozaki T; Shinkai S; Ide S; Higashi K; Tamura S; Shimazoe MA; Nakagawa M; Suzuki Y; Okada Y; Sasai M; Onami S; Kurokawa K; Iida S; Maeshima K
    Sci Adv; 2023 Apr; 9(14):eadf1488. PubMed ID: 37018405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prenucleosomes and Active Chromatin.
    Khuong MT; Fei J; Ishii H; Kadonaga JT
    Cold Spring Harb Symp Quant Biol; 2015; 80():65-72. PubMed ID: 26767995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The chromatin fiber: multiscale problems and approaches.
    Ozer G; Luque A; Schlick T
    Curr Opin Struct Biol; 2015 Apr; 31():124-39. PubMed ID: 26057099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromatin structures condensed by linker histones.
    Zhou BR; Bai Y
    Essays Biochem; 2019 Apr; 63(1):75-87. PubMed ID: 31015384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1.
    Kim MY; Mauro S; GĂ©vry N; Lis JT; Kraus WL
    Cell; 2004 Dec; 119(6):803-14. PubMed ID: 15607977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleosome organization and chromatin dynamics in telomeres.
    Ichikawa Y; Nishimura Y; Kurumizaka H; Shimizu M
    Biomol Concepts; 2015 Mar; 6(1):67-75. PubMed ID: 25720088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromatin remodeling by ATP-dependent molecular machines.
    Lusser A; Kadonaga JT
    Bioessays; 2003 Dec; 25(12):1192-200. PubMed ID: 14635254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organizing the genome with H2A histone variants.
    Millar CB
    Biochem J; 2013 Feb; 449(3):567-79. PubMed ID: 23301656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule nucleosome remodeling by INO80 and effects of histone tails.
    Schwarz M; Schall K; Kallis E; Eustermann S; Guariento M; Moldt M; Hopfner KP; Michaelis J
    FEBS Lett; 2018 Feb; 592(3):318-331. PubMed ID: 29331030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The dynamics of the nucleosome: thermal effects, external forces and ATP.
    Blossey R; Schiessel H
    FEBS J; 2011 Oct; 278(19):3619-32. PubMed ID: 21812931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates.
    Pazin MJ; Kamakaka RT; Kadonaga JT
    Science; 1994 Dec; 266(5193):2007-11. PubMed ID: 7801129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ATP dependent histone phosphorylation and nucleosome assembly in a human cell free extract.
    Banerjee S; Bennion GR; Goldberg MW; Allen TD
    Nucleic Acids Res; 1991 Nov; 19(21):5999-6006. PubMed ID: 1945884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capturing Structural Heterogeneity in Chromatin Fibers.
    Ekundayo B; Richmond TJ; Schalch T
    J Mol Biol; 2017 Oct; 429(20):3031-3042. PubMed ID: 28893533
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.
    Fennessy RT; Owen-Hughes T
    Nucleic Acids Res; 2016 Sep; 44(15):7189-203. PubMed ID: 27106059
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment.
    Daugird TA; Shi Y; Holland KL; Rostamian H; Liu Z; Lavis LD; Rodriguez J; Strahl BD; Legant WR
    Nat Commun; 2024 May; 15(1):4178. PubMed ID: 38755200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.