BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32283389)

  • 1. Numerical study for blood rheology inside an artery: The effects of stenosis and radius on the flow behavior.
    Foong LK; Zarringhalam M; Toghraie D; Izadpanahi N; Yan SR; Rostami S
    Comput Methods Programs Biomed; 2020 Sep; 193():105457. PubMed ID: 32283389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles.
    Yan SR; Zarringhalam M; Toghraie D; Foong LK; Talebizadehsardari P
    Comput Methods Programs Biomed; 2020 Aug; 192():105434. PubMed ID: 32182442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roll of stenosis severity, artery radius and blood fluid behavior on the flow velocity in the arteries: Application in biomedical engineering.
    Karimipour A; Toghraie D; Abdulkareem LA; Alizadeh A; Zarringhalam M; Karimipour A
    Med Hypotheses; 2020 Nov; 144():109864. PubMed ID: 32562914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow analysis inside different arteries using non-Newtonian Sisko model for application in biomedical engineering.
    Toghraie D; Esfahani NN; Zarringhalam M; Shirani N; Rostami S
    Comput Methods Programs Biomed; 2020 Jul; 190():105338. PubMed ID: 32007837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
    Sriyab S
    Comput Math Methods Med; 2014; 2014():479152. PubMed ID: 25587350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries.
    Lakzian E; Akbarzadeh P
    Biomed Mater Eng; 2020; 30(5-6):525-540. PubMed ID: 31771034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-Newtonian approaches for biomedical engineering.
    Foong LK; Shirani N; Toghraie D; Zarringhalam M; Afrand M
    Comput Methods Programs Biomed; 2020 Jul; 190():105375. PubMed ID: 32036202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry.
    DiCarlo AL; Holdsworth DW; Poepping TL
    Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the significance of blood flow inside stenosis coronary jointed with bypass vein: The case of anemic, normal, and hypertensive individuals.
    Rostami S; Mozoun MA; Toghraie D; Zarringhalam M; Goldanlou AS
    Comput Methods Programs Biomed; 2020 Nov; 196():105560. PubMed ID: 32535332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of curvature wall on the blood flow in stenosed artery: A computational study.
    Ahamad NA; Kamangar S; Badruddin IA
    Biomed Mater Eng; 2018; 29(3):319-332. PubMed ID: 29578467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stenosis and dilatation on the hemodynamic parameters associated with left coronary artery.
    Sandeep S; Shine SR
    Comput Methods Programs Biomed; 2021 Jun; 204():106052. PubMed ID: 33789214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models.
    Razavi A; Shirani E; Sadeghi MR
    J Biomech; 2011 Jul; 44(11):2021-30. PubMed ID: 21696742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.