These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32283438)

  • 21. Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates.
    Zeng RS; Mallik AU; Setliff E
    J Chem Ecol; 2003 Jun; 29(6):1337-55. PubMed ID: 12918920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa.
    Seo MS; Jin M; Chun JH; Kim SJ; Park BS; Shon SH; Kim JS
    Plant Mol Biol; 2016 Mar; 90(4-5):503-16. PubMed ID: 26820138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indole-3-Acetic Acid Is Synthesized by the Endophyte
    Jahn L; Hofmann U; Ludwig-Müller J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of indole glucosinolates in Chinese cabbage plants by expression of Arabidopsis CYP79B2, CYP79B3, and CYP83B1.
    Zang YX; Lim MH; Park BS; Hong SB; Kim DH
    Mol Cells; 2008 Apr; 25(2):231-41. PubMed ID: 18414013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis).
    Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU
    Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes.
    Park NI; Kim JK; Park WT; Cho JW; Lim YP; Park SU
    Mol Biol Rep; 2011 Nov; 38(8):4947-53. PubMed ID: 21161399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Methylation Level Changes in Transgenic Chinese Cabbage (
    Park JS; Shin YH; Park YD
    Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolite Profiling and Comparative Metabolomics Analysis of Jiaozhou Chinese Cabbage (
    Li J; Qiu M; Ritonga FN; Wang F; Zhou D; Li C; Li H; Zhang Y; Gao J
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):345. PubMed ID: 38179748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Plant Growth-Promoting Rhizobacterium Variovorax boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile.
    Sun SL; Yang WL; Fang WW; Zhao YX; Guo L; Dai YJ
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884755
    [No Abstract]   [Full Text] [Related]  

  • 30. Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene.
    Simoh S; Linthorst HJ; Lefeber AW; Erkelens C; Kim HK; Choi YH; Verpoorte R
    J Plant Physiol; 2010 Dec; 167(18):1525-32. PubMed ID: 20705362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of Brassica rapa ssp. pekinensis.
    Baskar V; Gangadhar BH; Park SW; Nile SH
    3 Biotech; 2016 Jun; 6(1):88. PubMed ID: 28330158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis.
    Baskar V; Venkatesh J; Park SW
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17672-82. PubMed ID: 26154034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage.
    Wang Y; Wu F; Bai J; He Y
    Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of glucosinolate production in hairy roots of green and red kale (
    Cuong DM; Park SU; Park CH; Kim NS; Bong SJ; Lee SY
    Prep Biochem Biotechnol; 2019; 49(8):775-782. PubMed ID: 31124740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid
    Park CH; Park SY; Park YJ; Kim JK; Park SU
    J Agric Food Chem; 2020 Nov; 68(47):13711-13719. PubMed ID: 33190495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.
    Baskar V; Park SW
    C R Biol; 2015 Jul; 338(7):434-42. PubMed ID: 26043798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agravitropic behaviour of roots of rapeseed (Brassica napus L.) transformed by Agrobacterium rhizogenes.
    Odegaard E; Nielsen KM; Beisvag T; Evjen K; Johnsson A; Rasmussen O; Iversen TH
    J Gravit Physiol; 1997 Oct; 4(3):5-14. PubMed ID: 11541870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC.
    Goswami D; Thakker JN; Dhandhukia PC
    J Microbiol Methods; 2015 Mar; 110():7-14. PubMed ID: 25573587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HTT2 promotes plant thermotolerance in Brassica rapa.
    Jiang J; Bai J; Li S; Li X; Yang L; He Y
    BMC Plant Biol; 2018 Jun; 18(1):127. PubMed ID: 29925322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Profiling in Chinese Cabbage (Brassica rapa L. subsp. pekinensis) Cultivars Reveals that Glucosinolate Content Is Correlated with Carotenoid Content.
    Baek SA; Jung YH; Lim SH; Park SU; Kim JK
    J Agric Food Chem; 2016 Jun; 64(21):4426-34. PubMed ID: 27172980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.