These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32283483)

  • 1. Bio-hydrogen and bio-methane potential analysis for production of bio-hythane using various agricultural residues.
    Rena ; Mohammed Bin Zacharia K; Yadav S; Machhirake NP; Kim SH; Lee BD; Jeong H; Singh L; Kumar S; Kumar R
    Bioresour Technol; 2020 Aug; 309():123297. PubMed ID: 32283483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cohesive strategy and energy conversion efficiency analysis of bio-hythane production from corncob powder by two-stage anaerobic digestion process.
    Zhang Z; Xu C; Zhang Y; Lu S; Guo L; Zhang Y; Li Y; Hu B; He C; Zhang Q
    Bioresour Technol; 2020 Mar; 300():122746. PubMed ID: 31956057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries.
    Ghimire A; Kumar G; Sivagurunathan P; Shobana S; Saratale GD; Kim HW; Luongo V; Esposito G; Munoz R
    Bioresour Technol; 2017 Oct; 241():525-536. PubMed ID: 28601770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Hythane production from organic fraction of municipal solid waste in single and two stage anaerobic digestion processes.
    Prashanth Kumar C; Rena ; Meenakshi A; Khapre AS; Kumar S; Anshul A; Singh L; Kim SH; Lee BD; Kumar R
    Bioresour Technol; 2019 Dec; 294():122220. PubMed ID: 31606597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.
    Biswas B; Pandey N; Bisht Y; Singh R; Kumar J; Bhaskar T
    Bioresour Technol; 2017 Aug; 237():57-63. PubMed ID: 28238637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion.
    Ali G; Ling Z; Saif I; Usman M; Jalalah M; Harraz FA; Al-Assiri MS; Salama ES; Li X
    Environ Pollut; 2021 Jun; 278():116801. PubMed ID: 33689949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters.
    Farhat A; Miladi B; Hamdi M; Bouallagui H
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27945-27958. PubMed ID: 30058041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.
    Bolado-Rodríguez S; Toquero C; Martín-Juárez J; Travaini R; García-Encina PA
    Bioresour Technol; 2016 Feb; 201():182-90. PubMed ID: 26642223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane production and lignocellulosic degradation of wastes from rice, corn and sugarcane by natural anaerobic fungi-methanogens co-culture.
    Kyawt YY; Aung M; Xu Y; Zhou Y; Li Y; Sun Z; Zhu W; Cheng Y
    World J Microbiol Biotechnol; 2024 Feb; 40(4):109. PubMed ID: 38411737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of agricultural residues for energy and resource recovery towards a sustainable environment.
    Talwar P; Upadhyay A; Verma N; Singh R; Lindenberger C; Pareek N; Kovalev AA; Zhuravleva EA; Litti YV; Masakapalli SK; Vivekanand V
    Environ Sci Pollut Res Int; 2024 Oct; 31(46):57354-57368. PubMed ID: 37667121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of chemical solution concentration and exposure time in the alkaline pretreatment applied to sugarcane bagasse for methane production.
    Remor PV; Bastos JA; Alino JHL; Frare LM; Kaparaju P; Edwiges T
    Environ Technol; 2023; 44(19):2843-2855. PubMed ID: 35195485
    [No Abstract]   [Full Text] [Related]  

  • 12. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.
    Janke L; Leite A; Nikolausz M; Schmidt T; Liebetrau J; Nelles M; Stinner W
    Int J Mol Sci; 2015 Aug; 16(9):20685-703. PubMed ID: 26404248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen and methane production through two stage anaerobic digestion of straw residues.
    Bertasini D; Battista F; Mancini R; Frison N; Bolzonella D
    Environ Res; 2024 Apr; 247():118101. PubMed ID: 38220080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane production by co-digestion of poultry manure and lignocellulosic biomass: Kinetic and energy assessment.
    Paranhos AGO; Adarme OFH; Barreto GF; Silva SQ; Aquino SF
    Bioresour Technol; 2020 Mar; 300():122588. PubMed ID: 31887579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora.
    Liu X; Hiligsmann S; Gourdon R; Bayard R
    J Environ Manage; 2017 May; 193():154-162. PubMed ID: 28213299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pretreatment of wheat straw by potassium hydroxide and calcium hydroxide: Methane production, economics, and energy potential analysis.
    Shen J; Zheng Q; Zhang R; Chen C; Liu G
    J Environ Manage; 2019 Apr; 236():720-726. PubMed ID: 30772729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of biogasification of wheat straw, sugarcane bagasse and pressmud.
    Singh PK; Srichandan H; Ojha SK; Mishra S; Naik K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):306-314. PubMed ID: 30663503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw.
    Zhou Y; Li C; Nges IA; Liu J
    Bioresour Technol; 2017 Jan; 224():78-86. PubMed ID: 27919545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomethane production by typical straw anaerobic digestion: Deep insights of material compositions and surface properties.
    Dai X; Hua Y; Liu R; Chen S; Li H; Dai L; Cai C
    Bioresour Technol; 2020 Oct; 313():123643. PubMed ID: 32540695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case.
    Hassan M; Ding W; Shi Z; Zhao S
    Bioresour Technol; 2016 Jul; 211():534-41. PubMed ID: 27038262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.