These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 32283683)

  • 41. A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow's Milk.
    Tanaka C; Yamada K; Takeuchi H; Inokuchi Y; Kashiwagi A; Toba T
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980554
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bacteria-phage interactions in natural environments.
    Díaz-Muñoz SL; Koskella B
    Adv Appl Microbiol; 2014; 89():135-83. PubMed ID: 25131402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparision of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei.
    Chen CW; Yuan L; Zhang YS; Mgomi FC; Wang Y; Yang ZQ; Jiao XA
    Microb Pathog; 2022 Jan; 162():105375. PubMed ID: 34974119
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and Characterization of a Lytic and Highly Specific Phage against
    Gwak KM; Choi IY; Lee J; Oh JH; Park MK
    J Microbiol Biotechnol; 2018 Nov; 28(11):1946-1954. PubMed ID: 30270603
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome properties and the limits of adaptation in bacteriophages.
    Bull JJ; Badgett MR; Springman R; Molineux IJ
    Evolution; 2004 Apr; 58(4):692-701. PubMed ID: 15154545
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic characterization of key bacteriophages to formulate the potential biocontrol agent to combat enteric pathogenic bacteria.
    Parmar KM; Dafale NA; Tikariha H; Purohit HJ
    Arch Microbiol; 2018 May; 200(4):611-622. PubMed ID: 29330592
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resolving the structure of phage-bacteria interactions in the context of natural diversity.
    Kauffman KM; Chang WK; Brown JM; Hussain FA; Yang J; Polz MF; Kelly L
    Nat Commun; 2022 Jan; 13(1):372. PubMed ID: 35042853
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.
    Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K
    Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative genomic analysis of three lytic Lactococcus garvieae phages, novel phages with genome architecture linking the 936 phage species of Lactococcus lactis.
    Hoai TD; Nishiki I; Fujiwara A; Yoshida T; Nakai T
    Mar Genomics; 2019 Dec; 48():100696. PubMed ID: 31301990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenotypic and genotypic variations within a single bacteriophage species.
    Ceyssens PJ; Glonti T; Kropinski NM; Lavigne R; Chanishvili N; Kulakov L; Lashkhi N; Tediashvili M; Merabishvili M
    Virol J; 2011 Mar; 8():134. PubMed ID: 21429206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of phages infecting Bacillus cereus.
    Lee WJ; Billington C; Hudson JA; Heinemann JA
    Lett Appl Microbiol; 2011 May; 52(5):456-64. PubMed ID: 21299576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model.
    Melo LDR; Ferreira R; Costa AR; Oliveira H; Azeredo J
    Sci Rep; 2019 Apr; 9(1):6643. PubMed ID: 31040333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broad host range bacteriophages found in rhizosphere soil of a healthy tomato plant in Bulgaria.
    Kizheva Y; Eftimova M; Rangelov R; Micheva N; Urshev Z; Rasheva I; Hristova P
    Heliyon; 2021 May; 7(5):e07084. PubMed ID: 34095579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis.
    Farlow J; Bolkvadze D; Leshkasheli L; Kusradze I; Kotorashvili A; Kotaria N; Balarjishvili N; Kvachadze L; Nikolich M; Kutateladze M
    BMC Genomics; 2018 Sep; 19(1):685. PubMed ID: 30227847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei.
    Yordpratum U; Tattawasart U; Wongratanacheewin S; Sermswan RW
    FEMS Microbiol Lett; 2011 Jan; 314(1):81-8. PubMed ID: 21091532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic diversity among five T4-like bacteriophages.
    Nolan JM; Petrov V; Bertrand C; Krisch HM; Karam JD
    Virol J; 2006 May; 3():30. PubMed ID: 16716236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved lyophilization conditions for long-term storage of bacteriophages.
    Manohar P; Ramesh N
    Sci Rep; 2019 Oct; 9(1):15242. PubMed ID: 31645642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphological characterization and biocontrol effects of Vibrio vulnificus phages against Vibriosis in the shrimp aquaculture environment.
    Srinivasan P; Ramasamy P
    Microb Pathog; 2017 Oct; 111():472-480. PubMed ID: 28917670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics of a Series of Three Bacteriophages Infecting
    Kosznik-Kwaśnicka K; Ciemińska K; Grabski M; Grabowski Ł; Górniak M; Jurczak-Kurek A; Węgrzyn G; Węgrzyn A
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32858954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria.
    Koskella B; Thompson JN; Preston GM; Buckling A
    Am Nat; 2011 Apr; 177(4):440-51. PubMed ID: 21460566
    [TBL] [