These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32283939)

  • 1. Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles.
    Zhang DF; Li S; Xu QH; Cao Y
    Langmuir; 2020 May; 36(17):4721-4727. PubMed ID: 32283939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay.
    Yuan P; Ma R; Gao N; Garai M; Xu QH
    Nanoscale; 2015 Jun; 7(22):10233-9. PubMed ID: 25990464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing.
    Li S; He J; Xu QH
    ACS Omega; 2020 Jan; 5(1):41-48. PubMed ID: 31956749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence enhancement monitoring of pyrromethene laser dyes by metallic Ag nanoparticles.
    Sakr ME; Abou Kana MT; Abdel Fattah G
    Luminescence; 2014 Nov; 29(7):938-44. PubMed ID: 24652745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protoporphyrin IX-Functionalized AgSiO
    Lismont M; Dreesen L; Heinrichs B; Páez CA
    Photochem Photobiol; 2016 Mar; 92(2):247-256. PubMed ID: 26668127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection.
    Yuan P; Ma R; Guan Z; Gao N; Xu QH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13149-56. PubMed ID: 24983536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of silver nanoparticle-conjugated fluorescent dyes into optical fiber modes for enhanced signal-to-noise ratio.
    Thi Tran NH; Phan TB; Nguyen TT; Ju H
    Biosens Bioelectron; 2021 Mar; 176():112900. PubMed ID: 33388687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles.
    Han F; Guan Z; Tan TS; Xu QH
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4746-51. PubMed ID: 22891672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-enhanced bio-detection platforms obtained through controlled "step-by-step" clustering of silver nanoparticles.
    Liu P; Zhou Y; Guo M; Yang S; Félix O; Martel D; Qiu Y; Ma Y; Decher G
    Nanoscale; 2018 Jan; 10(2):848-855. PubMed ID: 29261202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced ultra-wide NIR fluorescence in tellurite glass doped with Er
    Xia L; Zhang Y; Ding J; Li C; Shen X; Li J; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120075. PubMed ID: 34153548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Fluorescence Concentration Quenching of Porphyrin Potassium Salt by Ag Nano Colloids.
    Yang A; Wang N; Wang Y; Li S; Wang L; Yang Y; Bao X; Yang R
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3646-52. PubMed ID: 27451682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of the perylene probe excimer emission with silver nanoparticles.
    Li J; Zhou H; Zhang Y; Shahzad SA; Yang M; Hu Z; Yu C
    Anal Chim Acta; 2018 Aug; 1016():40-48. PubMed ID: 29534803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoting reactivity of photoexcited hot electrons in small-sized plasmonic metal nanoparticles that are supported on dielectric nanospheres.
    Rasamani KD; Sun Y
    J Chem Phys; 2020 Feb; 152(8):084706. PubMed ID: 32113372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability.
    Lama P; Suslov A; Walser AD; Dorsinville R
    Opt Express; 2014 Jun; 22(11):14014-21. PubMed ID: 24921592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength dependent specific plasmon resonance coupling of single silver nanoparticles with EGFP.
    Lee KJ; Huang T; Nallathamby PD; Xu XH
    Nanoscale; 2015 Nov; 7(42):17623-30. PubMed ID: 26455449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.
    Kierdaszuk B
    J Fluoresc; 2013 Mar; 23(2):339-47. PubMed ID: 23233051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin.
    Liu X; Liu J; Zhao X; Zhang D; Wang Q
    Opt Express; 2022 Sep; 30(19):34918-34931. PubMed ID: 36242494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of Plasmon-Induced Dual-Mode Fluorescence Enhancement upon Two-Photon Excitation.
    Shokova MA; Bochenkov VE
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.