BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32284391)

  • 1. Evaluation of non-invasive continuous physiological monitoring devices for neonates in Nairobi, Kenya: a research protocol.
    Ginsburg AS; Nkwopara E; Macharia W; Ochieng R; Waiyego M; Zhou G; Karasik R; Xu S; Ansermino JM
    BMJ Open; 2020 Apr; 10(4):e035184. PubMed ID: 32284391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiparameter Continuous Physiological Monitoring Technologies in Neonates Among Health Care Providers and Caregivers at a Private Tertiary Hospital in Nairobi, Kenya: Feasibility, Usability, and Acceptability Study.
    Ginsburg AS; Kinshella MW; Naanyu V; Rigg J; Chomba D; Coleman J; Hwang B; Ochieng R; Ansermino JM; Macharia WM
    J Med Internet Res; 2021 Oct; 23(10):e29755. PubMed ID: 34709194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qualitative study exploring the feasibility, usability and acceptability of neonatal continuous monitoring technologies at a public tertiary hospital in Nairobi, Kenya.
    Kinshella MW; Naanyu V; Chomba D; Waiyego M; Rigg J; Coleman J; Hwang B; Ansermino JM; Macharia WM; Ginsburg AS
    BMJ Open; 2022 Jan; 12(1):e053486. PubMed ID: 35017248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a contactless neonatal physiological monitor in Nairobi, Kenya.
    Wang D; Macharia WM; Ochieng R; Chomba D; Hadida YS; Karasik R; Dunsmuir D; Coleman J; Zhou G; Ginsburg AS; Ansermino JM
    Arch Dis Child; 2022 Jun; 107(6):558-564. PubMed ID: 34740876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical feasibility of a contactless multiparameter continuous monitoring technology for neonates in a large public maternity hospital in Nairobi, Kenya.
    Ginsburg AS; Zandi Nia S; Chomba D; Dunsmuir D; Waiyego M; Coleman J; Ochieng R; Liu S; Zhou G; Ansermino JM; Macharia WM
    Sci Rep; 2022 Feb; 12(1):3097. PubMed ID: 35197529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical feasibility of an advanced neonatal epidermal multiparameter continuous monitoring technology in a large public maternity hospital in Nairobi, Kenya.
    Ginsburg AS; Zandi Nia S; Chomba D; Parsimei M; Dunsmuir D; Waiyego M; Coleman J; Ochieng R; Zhou G; Macharia WM; Ansermino JM
    Sci Rep; 2022 Jul; 12(1):11722. PubMed ID: 35810244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of a wearable wireless patch for continuous remote monitoring of vital signs in patients recovering from major surgery: a clinical validation study from the TRaCINg trial.
    Downey C; Ng S; Jayne D; Wong D
    BMJ Open; 2019 Aug; 9(8):e031150. PubMed ID: 31420399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Sibel's Advanced Neonatal Epidermal (ANNE) wireless continuous physiological monitor in Nairobi, Kenya.
    Coleman J; Ginsburg AS; Macharia W; Ochieng R; Chomba D; Zhou G; Dunsmuir D; Xu S; Ansermino JM
    PLoS One; 2022; 17(6):e0267026. PubMed ID: 35771801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChroniSense National Early Warning Score Study (CHESS): a wearable wrist device to measure vital signs in hospitalised patients-protocol and study design.
    Van Velthoven MH; Adjei F; Vavoulis D; Wells G; Brindley D; Kardos A
    BMJ Open; 2019 Sep; 9(9):e028219. PubMed ID: 31542738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Monitoring of Vital Signs in the General Ward Using Wearable Devices: Randomized Controlled Trial.
    Weenk M; Bredie SJ; Koeneman M; Hesselink G; van Goor H; van de Belt TH
    J Med Internet Res; 2020 Jun; 22(6):e15471. PubMed ID: 32519972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: A systematic review.
    Sprogis SK; Currey J; Considine J
    J Clin Nurs; 2019 Aug; 28(15-16):2732-2744. PubMed ID: 31017338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility, acceptability and validation of wearable devices for climate change and health research in the low-resource contexts of Burkina Faso and Kenya: Study protocol.
    Barteit S; Boudo V; Ouedraogo A; Zabré P; Ouremi L; Sié A; Munga S; Obor D; Kwaro D; Huhn S; Bunker A; Sauerborn R; Gunga HC; Maggioni MA; Bärnighausen T
    PLoS One; 2021; 16(9):e0257170. PubMed ID: 34591893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of wireless monitoring using a wearable patch sensor in high-risk surgical patients at a step-down unit in the Netherlands: a clinical validation study.
    Breteler MJM; Huizinga E; van Loon K; Leenen LPH; Dohmen DAJ; Kalkman CJ; Blokhuis TJ
    BMJ Open; 2018 Feb; 8(2):e020162. PubMed ID: 29487076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vital Signs Monitoring with Wearable Sensors in High-risk Surgical Patients: A Clinical Validation Study.
    Breteler MJM; KleinJan EJ; Dohmen DAJ; Leenen LPH; van Hillegersberg R; Ruurda JP; van Loon K; Blokhuis TJ; Kalkman CJ
    Anesthesiology; 2020 Mar; 132(3):424-439. PubMed ID: 31743149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Validation of a Wearable Respiratory Rate Device for Neonatal Monitoring.
    Antony Raj A; Preejith SP; Raja VS; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1628-1631. PubMed ID: 30440705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Evidence for Continuous Vital Signs Monitoring by Wearable Wireless Devices in Hospitalized Adults: Systematic Review.
    Leenen JPL; Leerentveld C; van Dijk JD; van Westreenen HL; Schoonhoven L; Patijn GA
    J Med Internet Res; 2020 Jun; 22(6):e18636. PubMed ID: 32469323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Versus Intermittent Vital Signs Monitoring Using a Wearable, Wireless Patch in Patients Admitted to Surgical Wards: Pilot Cluster Randomized Controlled Trial.
    Downey C; Randell R; Brown J; Jayne DG
    J Med Internet Res; 2018 Dec; 20(12):e10802. PubMed ID: 30538086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of wireless sensors in the neonatal intensive care unit: a study protocol.
    Senechal E; Radeschi D; Tao L; Lv S; Jeanne E; Kearney R; Shalish W; Sant Anna G
    PeerJ; 2023; 11():e15578. PubMed ID: 37397010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of neonatal respiratory rate variability.
    Coleman J; Ginsburg AS; Macharia WM; Ochieng R; Chomba D; Zhou G; Dunsmuir D; Karlen W; Ansermino JM
    J Clin Monit Comput; 2022 Dec; 36(6):1869-1879. PubMed ID: 35332406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for a prospective, controlled, cross-sectional, diagnostic accuracy study to evaluate the specificity and sensitivity of ambulatory monitoring systems in the prompt detection of hypoxia and during movement.
    Areia C; Vollam S; Piper P; King E; Ede J; Young L; Santos M; Pimentel MAF; Roman C; Harford M; Shah A; Gustafson O; Rowland M; Tarassenko L; Watkinson PJ
    BMJ Open; 2020 Jan; 10(1):e034404. PubMed ID: 31932393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.