These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 32284495)

  • 21. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties.
    Olowojoba GB; Eslava S; Gutierrez ES; Kinloch AJ; Mattevi C; Rocha VG; Taylor AC
    Appl Nanosci; 2016; 6(7):1015-1022. PubMed ID: 32355586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of graphene-starch composite film and its application in sensor materials.
    Li S; Zhou W; Hu Y; Huang C; Gao Q; Chen Y
    Int J Biol Macromol; 2022 May; 207():365-373. PubMed ID: 35278507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.
    Ogihara H; Kibayashi H; Saji T
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4891-7. PubMed ID: 22900673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
    Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films.
    Wu M; Chen J; Wen Y; Chen H; Li Y; Li C; Shi G
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5812-5818. PubMed ID: 29373015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabricating high thermal conductivity rGO/polyimide nanocomposite films
    Wei S; Yu Q; Fan Z; Liu S; Chi Z; Chen X; Zhang Y; Xu J
    RSC Adv; 2018 Jun; 8(39):22169-22176. PubMed ID: 35541724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order.
    Wang B; Cunning BV; Kim NY; Kargar F; Park SY; Li Z; Joshi SR; Peng L; Modepalli V; Chen X; Shen Y; Seong WK; Kwon Y; Jang J; Shi H; Gao C; Kim GH; Shin TJ; Kim K; Kim JY; Balandin AA; Lee Z; Ruoff RS
    Adv Mater; 2019 Jul; 31(29):e1903039. PubMed ID: 31155773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible Thermoelectric Reduced Graphene Oxide/Ag
    Wang J; Du Y; Qin J; Wang L; Meng Q; Li Z; Shen SZ
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of flexible composite film based on xylan from pulping process for packaging application.
    Rao J; Lv Z; Chen G; Hao X; Guan Y; Peng F
    Int J Biol Macromol; 2021 Mar; 173():285-292. PubMed ID: 33485889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Octadecylamine-Grafted Graphene Oxide Helps the Dispersion of Carbon Nanotubes in Ethylene Vinyl Acetate.
    Jia LC; Jiao ZH; Yan DX; Li ZM
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong and Conductive Dry Carbon Nanotube Films by Microcombing.
    Zhang L; Wang X; Xu W; Zhang Y; Li Q; Bradford PD; Zhu Y
    Small; 2015 Aug; 11(31):3830-6. PubMed ID: 25941071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman characterization of thermal conduction in transparent carbon nanotube films.
    Kim D; Zhu L; Han CS; Kim JH; Baik S
    Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures.
    Huang Y; Gong Q; Zhang Q; Shao Y; Wang J; Jiang Y; Zhao M; Zhuang D; Liang J
    Nanoscale; 2017 Feb; 9(6):2340-2347. PubMed ID: 28139800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
    Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y
    Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporating MXene into Boron Nitride/Poly(Vinyl Alcohol) Composite Films to Enhance Thermal and Mechanical Properties.
    Lee S; Kim J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33530459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.
    Kim JY; Kim T; Suk JW; Chou H; Jang JH; Lee JH; Kholmanov IN; Akinwande D; Ruoff RS
    Small; 2014 Aug; 10(16):3405-11. PubMed ID: 24789173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epoxy Nanocomposites with Reduced Graphene Oxide-Constructed Three-Dimensional Networks of Single Wall Carbon Nanotube for Enhanced Thermal Management Capability with Low Filler Loading.
    Liang X; Dai F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3051-3058. PubMed ID: 31855411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films.
    Liu S; Li X; Chen L; Li L; Li B; Zhu J
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1330-1337. PubMed ID: 28587969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of Thermal Management Performance of Copper Foil Using Additive-Free Graphene Coating.
    Hu B; Yuan H; Chen G
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and Comparison of Reduced Graphene Oxide and Carbon Nanotubes as Fillers in Conductive Natural Rubber for Flexible Electronics.
    Capezza A; Andersson RL; Ström V; Wu Q; Sacchi B; Farris S; Hedenqvist MS; Olsson RT
    ACS Omega; 2019 Feb; 4(2):3458-3468. PubMed ID: 31459561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.