BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 32284982)

  • 21. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.
    Zhang Z; Wang J
    J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).
    Harel E; Engel GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):706-11. PubMed ID: 22215585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.
    Turner DB; Dinshaw R; Lee KK; Belsley MS; Wilk KE; Curmi PM; Scholes GD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4857-74. PubMed ID: 22374579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations?
    Runeson JE; Lawrence JE; Mannouch JR; Richardson JO
    J Phys Chem Lett; 2022 Apr; 13(15):3392-3399. PubMed ID: 35404611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center.
    Paleček D; Edlund P; Westenhoff S; Zigmantas D
    Sci Adv; 2017 Sep; 3(9):e1603141. PubMed ID: 28913419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and Efficiency in Bacterial Photosynthetic Light Harvesting.
    Bourne Worster S; Stross C; Vaughan FMWC; Linden N; Manby FR
    J Phys Chem Lett; 2019 Dec; 10(23):7383-7390. PubMed ID: 31714789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excitation energy transfer in a classical analogue of photosynthetic antennae.
    Mančal T
    J Phys Chem B; 2013 Sep; 117(38):11282-91. PubMed ID: 23822554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations.
    Arpin PC; Turner DB; McClure SD; Jumper CC; Mirkovic T; Challa JR; Lee J; Teng CY; Green BR; Wilk KE; Curmi PM; Hoef-Emden K; McCamant DW; Scholes GD
    J Phys Chem B; 2015 Aug; 119(31):10025-34. PubMed ID: 26189800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes.
    Pachón LA; Brumer P
    Phys Chem Chem Phys; 2012 Aug; 14(29):10094-108. PubMed ID: 22735237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
    Pelzer KM; Griffin GB; Gray SK; Engel GS
    J Chem Phys; 2012 Apr; 136(16):164508. PubMed ID: 22559497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy.
    Ferretti M; Novoderezhkin VI; Romero E; Augulis R; Pandit A; Zigmantas D; van Grondelle R
    Phys Chem Chem Phys; 2014 Jun; 16(21):9930-9. PubMed ID: 24430275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes.
    Song K; Bai S; Shi Q
    J Phys Chem B; 2016 Nov; 120(45):11637-11643. PubMed ID: 27749066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria.
    Gall A; Sogaila E; Gulbinas V; Ilioaia O; Robert B; Valkunas L
    Biochim Biophys Acta; 2010 Aug; 1797(8):1465-9. PubMed ID: 20470750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum biology on the edge of quantum chaos.
    Vattay G; Kauffman S; Niiranen S
    PLoS One; 2014; 9(3):e89017. PubMed ID: 24603620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting.
    Scholes GD; Smyth C
    J Chem Phys; 2014 Mar; 140(11):110901. PubMed ID: 24655162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex.
    Shim S; Rebentrost P; Valleau S; Aspuru-Guzik A
    Biophys J; 2012 Feb; 102(3):649-60. PubMed ID: 22325289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
    Ishizaki A; Fleming GR
    J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.