These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32285025)
1. Deep-learning-based Prediction of Late Age-Related Macular Degeneration Progression. Yan Q; Weeks DE; Xin H; Swaroop A; Chew EY; Huang H; Ding Y; Chen W Nat Mach Intell; 2020 Feb; 2(2):141-150. PubMed ID: 32285025 [TBL] [Abstract][Full Text] [Related]
2. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Grassmann F; Mengelkamp J; Brandl C; Harsch S; Zimmermann ME; Linkohr B; Peters A; Heid IM; Palm C; Weber BHF Ophthalmology; 2018 Sep; 125(9):1410-1420. PubMed ID: 29653860 [TBL] [Abstract][Full Text] [Related]
3. Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning. Lee J; Wanyan T; Chen Q; Keenan TDL; Glicksberg BS; Chew EY; Lu Z; Wang F; Peng Y Mach Learn Med Imaging; 2022 Sep; 13583():11-20. PubMed ID: 36656604 [TBL] [Abstract][Full Text] [Related]
4. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. Burlina PM; Joshi N; Pekala M; Pacheco KD; Freund DE; Bressler NM JAMA Ophthalmol; 2017 Nov; 135(11):1170-1176. PubMed ID: 28973096 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence to Stratify Severity of Age-Related Macular Degeneration (AMD) and Predict Risk of Progression to Late AMD. Bhuiyan A; Wong TY; Ting DSW; Govindaiah A; Souied EH; Smith RT Transl Vis Sci Technol; 2020 Apr; 9(2):25. PubMed ID: 32818086 [TBL] [Abstract][Full Text] [Related]
6. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration. Burlina PM; Joshi N; Pacheco KD; Freund DE; Kong J; Bressler NM JAMA Ophthalmol; 2018 Dec; 136(12):1359-1366. PubMed ID: 30242349 [TBL] [Abstract][Full Text] [Related]
7. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958 [TBL] [Abstract][Full Text] [Related]
8. Generating future fundus images for early age-related macular degeneration based on generative adversarial networks. Pham QTM; Ahn S; Shin J; Song SJ Comput Methods Programs Biomed; 2022 Apr; 216():106648. PubMed ID: 35131605 [TBL] [Abstract][Full Text] [Related]
9. LONGL-Net: temporal correlation structure guided deep learning model to predict longitudinal age-related macular degeneration severity. Ganjdanesh A; Zhang J; Chew EY; Ding Y; Huang H; Chen W PNAS Nexus; 2022 Mar; 1(1):pgab003. PubMed ID: 35360552 [TBL] [Abstract][Full Text] [Related]
10. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration. Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091 [TBL] [Abstract][Full Text] [Related]
11. Bivariate Analysis of Age-Related Macular Degeneration Progression Using Genetic Risk Scores. Ding Y; Liu Y; Yan Q; Fritsche LG; Cook RJ; Clemons T; Ratnapriya R; Klein ML; Abecasis GR; Swaroop A; Chew EY; Weeks DE; Chen W; Genetics; 2017 May; 206(1):119-133. PubMed ID: 28341650 [TBL] [Abstract][Full Text] [Related]
12. Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS. Ghahramani G; Brendel M; Lin M; Chen Q; Keenan T; Chen K; Chew E; Lu Z; Peng Y; Wang F AMIA Annu Symp Proc; 2021; 2021():506-515. PubMed ID: 35308963 [TBL] [Abstract][Full Text] [Related]
13. Adherence to the Mediterranean Diet and Progression to Late Age-Related Macular Degeneration in the Age-Related Eye Disease Studies 1 and 2. Keenan TD; Agrón E; Mares J; Clemons TE; van Asten F; Swaroop A; Chew EY; Ophthalmology; 2020 Nov; 127(11):1515-1528. PubMed ID: 32348832 [TBL] [Abstract][Full Text] [Related]
14. Predicting Age-Related Macular Degeneration Progression with Contrastive Attention and Time-Aware LSTM. Yin C; Moroi SE; Zhang P KDD; 2022 Aug; 2022():4402-4412. PubMed ID: 36158613 [TBL] [Abstract][Full Text] [Related]
15. The Association of Aspirin Use with Age-Related Macular Degeneration Progression in the Age-Related Eye Disease Studies: Age-Related Eye Disease Study 2 Report No. 20. Keenan TD; Wiley HE; Agrón E; Aronow ME; Christen WG; Clemons TE; Chew EY; Ophthalmology; 2019 Dec; 126(12):1647-1656. PubMed ID: 31358390 [TBL] [Abstract][Full Text] [Related]
16. Quantification of fundus autofluorescence to detect disease severity in nonexudative age-related macular degeneration. Schachar IH; Zahid S; Comer GM; Stem M; Schachar AG; Saxe SJ; Gardner TW; Elner VM; Jayasundera T JAMA Ophthalmol; 2013 Aug; 131(8):1009-15. PubMed ID: 23787960 [TBL] [Abstract][Full Text] [Related]
17. Optimized Prediction Models from Fundus Imaging and Genetics for Late Age-Related Macular Degeneration. Govindaiah A; Baten A; Smith RT; Balasubramanian S; Bhuiyan A J Pers Med; 2021 Nov; 11(11):. PubMed ID: 34834479 [TBL] [Abstract][Full Text] [Related]
18. DCNN-based prediction model for detection of age-related macular degeneration from color fundus images. Chakraborty R; Pramanik A Med Biol Eng Comput; 2022 May; 60(5):1431-1448. PubMed ID: 35267149 [TBL] [Abstract][Full Text] [Related]
19. Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis. Burlina P; Pacheco KD; Joshi N; Freund DE; Bressler NM Comput Biol Med; 2017 Mar; 82():80-86. PubMed ID: 28167406 [TBL] [Abstract][Full Text] [Related]