These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32285040)

  • 1. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: Bacterial RNA polymerase and CHAPSO.
    Chen J; Noble AJ; Kang JY; Darst SA
    J Struct Biol X; 2019; 1():. PubMed ID: 32285040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of charge on protein preferred orientation at the air-water interface in cryo-electron microscopy.
    Li B; Zhu D; Shi H; Zhang X
    J Struct Biol; 2021 Dec; 213(4):107783. PubMed ID: 34454014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of surfactants in electron cryo-microscopy film preparation.
    Michon B; López-Sánchez U; Degrouard J; Nury H; Leforestier A; Rio E; Salonen A; Zoonens M
    Biophys J; 2023 May; 122(10):1846-1857. PubMed ID: 37077048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallo-supramolecular branched polymer protects particles from air-water interface in single-particle cryo-electron microscopy.
    Xu Y; Qin Y; Wang L; Zhang Y; Wang Y; Dang S
    Commun Biol; 2024 Jan; 7(1):65. PubMed ID: 38195919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing effects of particle adsorption to the air-water interface in cryo-EM.
    Noble AJ; Wei H; Dandey VP; Zhang Z; Tan YZ; Potter CS; Carragher B
    Nat Methods; 2018 Oct; 15(10):793-795. PubMed ID: 30250056
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Cheng H; Zheng L; Liu N; Huang C; Xu J; Lu Y; Cui X; Xu K; Hou Y; Tang J; Zhang Z; Li J; Ni X; Chen Y; Peng H; Wang HW
    J Am Chem Soc; 2023 Apr; 145(14):8073-8081. PubMed ID: 37011903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM grid optimization for membrane proteins.
    Kampjut D; Steiner J; Sazanov LA
    iScience; 2021 Mar; 24(3):102139. PubMed ID: 33665558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids.
    Lahiri I; Xu J; Han BG; Oh J; Wang D; DiMaio F; Leschziner AE
    J Struct Biol; 2019 Sep; 207(3):270-278. PubMed ID: 31200019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Routine single particle CryoEM sample and grid characterization by tomography.
    Noble AJ; Dandey VP; Wei H; Brasch J; Chase J; Acharya P; Tan YZ; Zhang Z; Kim LY; Scapin G; Rapp M; Eng ET; Rice WJ; Cheng A; Negro CJ; Shapiro L; Kwong PD; Jeruzalmi D; des Georges A; Potter CS; Carragher B
    Elife; 2018 May; 7():. PubMed ID: 29809143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of human erythrocyte catalase with air-water interface in cryoEM.
    Chen S; Li J; Vinothkumar KR; Henderson R
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i51-i59. PubMed ID: 35275189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies.
    Yu G; Vago F; Zhang D; Snyder JE; Yan R; Zhang C; Benjamin C; Jiang X; Kuhn RJ; Serwer P; Thompson DH; Jiang W
    J Struct Biol; 2014 Jul; 187(1):1-9. PubMed ID: 24780590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of RNA Polymerase Complexes for Their Analysis by Single-Particle Cryo-Electron Microscopy.
    Pilsl M; Heiss FB; Pöll G; Höcherl M; Milkereit P; Engel C
    Methods Mol Biol; 2022; 2533():81-96. PubMed ID: 35796984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI.
    Fan H; Wang B; Zhang Y; Zhu Y; Song B; Xu H; Zhai Y; Qiao M; Sun F
    Nat Commun; 2021 Dec; 12(1):7257. PubMed ID: 34907237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPOT-RASTR - a cryo-EM specimen preparation technique that overcomes problems with preferred orientation and the air/water interface.
    Esfahani BG; Randolph PS; Peng R; Grant T; Stroupe ME; Stagg SM
    bioRxiv; 2024 Jan; ():. PubMed ID: 38501120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A measure for the identification of preferred particle orientations in cryo-electron microscopy data: A simulation study.
    Kojima R; Yoshidome T
    Biophys Physicobiol; 2021; 18():96-107. PubMed ID: 34026399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of monolayer graphene to cryo-electron microscopy grids for high-resolution structure determination.
    Grassetti AV; May MB; Davis JH
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM.
    Zhao Q; Hong X; Wang Y; Zhang S; Ding Z; Meng X; Song Q; Hong Q; Jiang W; Shi X; Cai T; Cong Y
    Commun Biol; 2024 Jun; 7(1):715. PubMed ID: 38858498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Better Cryo-EM Specimen Preparation: How to Deal with the Air-Water Interface?
    Liu N; Wang HW
    J Mol Biol; 2023 May; 435(9):167926. PubMed ID: 36563741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. It started with a Cys: Spontaneous cysteine modification during cryo-EM grid preparation.
    Klebl DP; Wang Y; Sobott F; Thompson RF; Muench SP
    Front Mol Biosci; 2022; 9():945772. PubMed ID: 35992264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy.
    Liu N; Zhang J; Chen Y; Liu C; Zhang X; Xu K; Wen J; Luo Z; Chen S; Gao P; Jia K; Liu Z; Peng H; Wang HW
    J Am Chem Soc; 2019 Mar; 141(9):4016-4025. PubMed ID: 30724081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.