These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32285044)

  • 1. Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements.
    de Souza F; Raeesi A; Belzile M; Caffrey C; Schmitt A
    SAE Int J Adv Curr Pract Mobil; 2019; 1(3):1233-1250. PubMed ID: 32285044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamic integration produces a vehicle shape with a negative drag coefficient.
    Salari K; Ortega JM
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States.
    Wang X; Khlystov A; Ho KF; Campbell D; Chow JC; Kohl SD; Watson JG; Lee SF; Chen LA; Lu M; Ho SSH
    Res Rep Health Eff Inst; 2019 Mar; 2019(199):5-52. PubMed ID: 31663714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths.
    Jia L; Zhou D; Niu J
    PLoS One; 2017; 12(12):e0189798. PubMed ID: 29261758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind tunnel measurements of the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-duty truck tractor head.
    Chang VW; Hildemann LM; Chang CH
    J Air Waste Manag Assoc; 2009 Jun; 59(6):704-14. PubMed ID: 19603738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bio-inspired device for drag reduction on a three-dimensional model vehicle.
    Kim D; Lee H; Yi W; Choi H
    Bioinspir Biomim; 2016 Mar; 11(2):026004. PubMed ID: 26963693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic investigation of the thermo-dependent flow structure in the wake of a cyclist.
    Beaumont F; Lestriez P; Estocq P; Taiar R; Grappe F; Polidori G
    J Biomech; 2019 Jan; 82():387-391. PubMed ID: 30477873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step?
    Giechaskiel B; Lähde T; Drossinos Y
    Environ Res; 2019 May; 172():1-9. PubMed ID: 30769183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analyses of a reference wing for combination of hybrid laminar flow control and variable camber.
    Jentys MM; Effing T; Breitsamter C; Stumpf E
    CEAS Aeronaut J; 2022; 13(4):989-1002. PubMed ID: 35874442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bumper and grille airbags concept for enhanced vehicle compatibility in side impact: phase II.
    Barbat S; Li X; Prasad P
    Traffic Inj Prev; 2013; 14 Suppl():S30-9. PubMed ID: 23905559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An energy-efficient pathway to turbulent drag reduction.
    Marusic I; Chandran D; Rouhi A; Fu MK; Wine D; Holloway B; Chung D; Smits AJ
    Nat Commun; 2021 Oct; 12(1):5805. PubMed ID: 34608161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Eddy BreakUp Devices - a 40 Years Perspective from a Stockholm Horizon.
    Alfredsson PH; Örlü R
    Flow Turbul Combust; 2018; 100(4):877-888. PubMed ID: 30069144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shark skin-inspired designs that improve aerodynamic performance.
    Domel AG; Saadat M; Weaver JC; Haj-Hariri H; Bertoldi K; Lauder GV
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29436512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation and Efficiency Improvement of Electric Vehicles Using Computational Fluid Dynamics Modelling.
    Afianto D; Han Y; Yan P; Yang Y; Elbarghthi AFA; Wen C
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36359674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin friction drag measurements by LDV.
    Mazumder MK; Wanchoo S; McLeod PC; Ballard GS; Mozumdar S; Caraballo N
    Appl Opt; 1981 Aug; 20(16):2832-7. PubMed ID: 20333049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.