BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 32285361)

  • 1. Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone.
    Maia FR; Reis RL; Correlo VM; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():1-14. PubMed ID: 32285361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors.
    Freeman FE; Burdis R; Kelly DJ
    Trends Mol Med; 2021 Jul; 27(7):700-711. PubMed ID: 34090809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review.
    Carvalho V; Gonçalves I; Lage T; Rodrigues RO; Minas G; Teixeira SFCF; Moita AS; Hori T; Kaji H; Lima RA
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review.
    Nie J; Gao Q; Fu J; He Y
    Adv Healthc Mater; 2020 Apr; 9(7):e1901773. PubMed ID: 32125787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling personalized implant and controllable biosystem development through 3D printing.
    Nagarajan N; Dupret-Bories A; Karabulut E; Zorlutuna P; Vrana NE
    Biotechnol Adv; 2018; 36(2):521-533. PubMed ID: 29428560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ Bioprinting: Are We There Yet?
    Gao G; Huang Y; Schilling AF; Hubbell K; Cui X
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed fluidic networks as vasculature for engineered tissue.
    Kinstlinger IS; Miller JS
    Lab Chip; 2016 May; 16(11):2025-43. PubMed ID: 27173478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications.
    Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V
    J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery.
    Dhawan A; Kennedy PM; Rizk EB; Ozbolat IT
    J Am Acad Orthop Surg; 2019 Mar; 27(5):e215-e226. PubMed ID: 30371527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip high-definition bioprinting of microvascular structures.
    Dobos A; Gantner F; Markovic M; Van Hoorick J; Tytgat L; Van Vlierberghe S; Ovsianikov A
    Biofabrication; 2021 Feb; 13(1):015016. PubMed ID: 33586666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting of Tissue/Organ Models.
    Pati F; Gantelius J; Svahn HA
    Angew Chem Int Ed Engl; 2016 Apr; 55(15):4650-65. PubMed ID: 26895542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D cell aggregate printing technology and its applications.
    Jeon S; Lee SH; Ahmed SB; Han J; Heo SJ; Kang HW
    Essays Biochem; 2021 Aug; 65(3):467-480. PubMed ID: 34223609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.