These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32285367)

  • 21. Quantification of angiogenic sprouting under different growth factors in a microfluidic platform.
    Del Amo C; Borau C; Gutiérrez R; Asín J; García-Aznar JM
    J Biomech; 2016 May; 49(8):1340-1346. PubMed ID: 26556715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.
    Laurenzana A; Fibbi G; Margheri F; Biagioni A; Luciani C; Del Rosso M; Chillà A
    Curr Mol Med; 2015; 15(7):606-20. PubMed ID: 26321757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic culture models of tumor angiogenesis.
    Stroock AD; Fischbach C
    Tissue Eng Part A; 2010 Jul; 16(7):2143-6. PubMed ID: 20214470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel 3D vascular assay for evaluating angiogenesis across porous membranes.
    Bai J; Haase K; Roberts JJ; Hoffmann J; Nguyen HT; Wan Z; Zhang S; Sarker B; Friedman N; Ristić-Lehmann Č; Kamm RD
    Biomaterials; 2021 Jan; 268():120592. PubMed ID: 33348261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians.
    Simitian G; Virumbrales-Muñoz M; Sánchez-de-Diego C; Beebe DJ; Kosoff D
    Lab Chip; 2022 Sep; 22(19):3618-3636. PubMed ID: 36047330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
    Jang J; Park JY; Gao G; Cho DW
    Biomaterials; 2018 Feb; 156():88-106. PubMed ID: 29190501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications.
    Darweesh RS; Ayoub NM; Nazzal S
    Int J Nanomedicine; 2019; 14():7643-7663. PubMed ID: 31571869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform.
    van Duinen V; Zhu D; Ramakers C; van Zonneveld AJ; Vulto P; Hankemeier T
    Angiogenesis; 2019 Feb; 22(1):157-165. PubMed ID: 30171498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angiogenesis--a new target for future therapy.
    Pandya NM; Dhalla NS; Santani DD
    Vascul Pharmacol; 2006 May; 44(5):265-74. PubMed ID: 16545987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models
    Dikici S; Claeyssens F; MacNeil S
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3513-3528. PubMed ID: 32582840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.
    Chandra P; Atala A
    Clin Sci (Lond); 2019 May; 133(9):1115-1135. PubMed ID: 31088895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the biology of angiogenesis: review of the most important molecular mechanisms.
    Otrock ZK; Mahfouz RA; Makarem JA; Shamseddine AI
    Blood Cells Mol Dis; 2007; 39(2):212-20. PubMed ID: 17553709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological aspects in controlling angiogenesis: current progress.
    Akbarian M; Bertassoni LE; Tayebi L
    Cell Mol Life Sci; 2022 Jun; 79(7):349. PubMed ID: 35672585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Implication of hyaluronic acid in normal and pathological angiogenesis. Application for cellular engineering].
    Lataillade JJ; Albanese P; Uzan G
    Ann Dermatol Venereol; 2010 Apr; 137 Suppl 1():S15-22. PubMed ID: 20435250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance.
    Rusnati M; Presta M
    Cytokine Growth Factor Rev; 2015 Jun; 26(3):293-310. PubMed ID: 25465594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesizing Living Tissues with Microfluidics.
    Zheng W; Jiang X
    Acc Chem Res; 2018 Dec; 51(12):3166-3173. PubMed ID: 30456942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic models of vascular functions.
    Wong KH; Chan JM; Kamm RD; Tien J
    Annu Rev Biomed Eng; 2012; 14():205-30. PubMed ID: 22540941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing.
    Boutin ME; Hampton C; Quinn R; Ferrer M; Song MJ
    Adv Exp Med Biol; 2019; 1186():171-193. PubMed ID: 31654390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis.
    Shirure VS; Lezia A; Tao A; Alonzo LF; George SC
    Angiogenesis; 2017 Nov; 20(4):493-504. PubMed ID: 28608153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vascularized Microfluidics and Their Untapped Potential for Discovery in Diseases of the Microvasculature.
    Myers DR; Lam WA
    Annu Rev Biomed Eng; 2021 Jul; 23():407-432. PubMed ID: 33863238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.