BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32285369)

  • 1. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing.
    Fernandes DC; Canadas RF; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreactors and Microfluidics for Osteochondral Interface Maturation.
    Canadas RF; Marques AP; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2018; 1059():395-420. PubMed ID: 29736584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbioreactors for high-throughput cytotoxicity assays.
    Yang ST; Zhang X; Wen Y
    Curr Opin Drug Discov Devel; 2008 Jan; 11(1):111-27. PubMed ID: 18175274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Engineering of Ocular Tissues for Disease Modeling and Drug Testing.
    Boutin ME; Hampton C; Quinn R; Ferrer M; Song MJ
    Adv Exp Med Biol; 2019; 1186():171-193. PubMed ID: 31654390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer drug discovery: recent innovative approaches to tumor modeling.
    Lovitt CJ; Shelper TB; Avery VM
    Expert Opin Drug Discov; 2016 Sep; 11(9):885-94. PubMed ID: 27454169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips.
    Radhakrishnan J; Varadaraj S; Dash SK; Sharma A; Verma RS
    Drug Discov Today; 2020 May; 25(5):879-890. PubMed ID: 32165322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking Tumors: Toward More Predictive In Vitro Models for Peptide- and Protein-Conjugated Drugs.
    van den Brand D; Massuger LF; Brock R; Verdurmen WP
    Bioconjug Chem; 2017 Mar; 28(3):846-856. PubMed ID: 28122451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional in vitro tumor models for cancer research and drug evaluation.
    Xu X; Farach-Carson MC; Jia X
    Biotechnol Adv; 2014 Nov; 32(7):1256-1268. PubMed ID: 25116894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening.
    Heylman C; Sobrino A; Shirure VS; Hughes CC; George SC
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1240-54. PubMed ID: 24740872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.
    Sart S; Agathos SN; Li Y; Ma T
    Biotechnol J; 2016 Jan; 11(1):43-57. PubMed ID: 26696441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration.
    Osswald A; Hedrich V; Sommergruber W
    Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.
    Carvalho MR; Lima D; Reis RL; Oliveira JM; Correlo VM
    Stem Cell Rev Rep; 2017 Jun; 13(3):347-363. PubMed ID: 28233276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond 3D culture models of cancer.
    Tanner K; Gottesman MM
    Sci Transl Med; 2015 Apr; 7(283):283ps9. PubMed ID: 25877888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.
    Santo VE; Rebelo SP; Estrada MF; Alves PM; Boghaert E; Brito C
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27966285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.