These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32285369)
21. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Brooks A; Zhang Y; Chen J; Zhao CX Adv Healthc Mater; 2024 Aug; 13(21):e2302436. PubMed ID: 38224141 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Buchanan C; Rylander MN Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255 [TBL] [Abstract][Full Text] [Related]
23. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform. Liu W; Sun M; Han K; Wang J Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029 [TBL] [Abstract][Full Text] [Related]
24. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484 [TBL] [Abstract][Full Text] [Related]
25. Large-scale pharmacological profiling of 3D tumor models of cancer cells. Mathews Griner LA; Zhang X; Guha R; McKnight C; Goldlust IS; Lal-Nag M; Wilson K; Michael S; Titus S; Shinn P; Thomas CJ; Ferrer M Cell Death Dis; 2016 Dec; 7(12):e2492. PubMed ID: 27906188 [TBL] [Abstract][Full Text] [Related]
26. Microfluidic 3D models of cancer. Sung KE; Beebe DJ Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity. Peck Y; Wang DA Expert Opin Drug Deliv; 2013 Mar; 10(3):369-83. PubMed ID: 23289593 [TBL] [Abstract][Full Text] [Related]
28. Microfluidic technologies for anticancer drug studies. Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326 [TBL] [Abstract][Full Text] [Related]
29. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform. Liu W; Wang J Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952 [TBL] [Abstract][Full Text] [Related]
30. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Rijal G; Li W Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Hickman JA; Graeser R; de Hoogt R; Vidic S; Brito C; Gutekunst M; van der Kuip H; Biotechnol J; 2014 Sep; 9(9):1115-28. PubMed ID: 25174503 [TBL] [Abstract][Full Text] [Related]
32. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate. Lei KF; Liu TK; Tsang NM Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107 [TBL] [Abstract][Full Text] [Related]
33. Drug Screening Using Normal Cell and Cancer Cell Mixture in an Automated 3D Cell Culture System. Carson MC; Xu P; Gildea JJ; Marino CF; Felder RA Methods Mol Biol; 2024; 2823():95-108. PubMed ID: 39052216 [TBL] [Abstract][Full Text] [Related]
34. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
35. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Schuster B; Junkin M; Kashaf SS; Romero-Calvo I; Kirby K; Matthews J; Weber CR; Rzhetsky A; White KP; Tay S Nat Commun; 2020 Oct; 11(1):5271. PubMed ID: 33077832 [TBL] [Abstract][Full Text] [Related]
36. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Unger C; Kramer N; Walzl A; Scherzer M; Hengstschläger M; Dolznig H Adv Drug Deliv Rev; 2014 Dec; 79-80():50-67. PubMed ID: 25453261 [TBL] [Abstract][Full Text] [Related]
37. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge? Friedrich J; Ebner R; Kunz-Schughart LA Int J Radiat Biol; 2007; 83(11-12):849-71. PubMed ID: 18058370 [TBL] [Abstract][Full Text] [Related]
38. Probing the relevance of 3D cancer models in nanomedicine research. Leong DT; Ng KW Adv Drug Deliv Rev; 2014 Dec; 79-80():95-106. PubMed ID: 24996135 [TBL] [Abstract][Full Text] [Related]
39. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Stanković T; Ranđelović T; Dragoj M; Stojković Burić S; Fernández L; Ochoa I; Pérez-García VM; Pešić M Drug Resist Updat; 2021 Mar; 55():100753. PubMed ID: 33667959 [TBL] [Abstract][Full Text] [Related]
40. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. Mosaad E; Chambers K; Futrega K; Clements J; Doran MR BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]