These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32285370)

  • 1. Nanoparticles and Microfluidic Devices in Cancer Research.
    Maia FR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges.
    Maia FR; Reis RL; Oliveira JM
    Nanomedicine; 2020 Feb; 24():102139. PubMed ID: 31843662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone.
    Maia FR; Reis RL; Correlo VM; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():1-14. PubMed ID: 32285361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials and Microfluidics for Drug Discovery and Development.
    Carvalho MR; Truckenmuller R; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():121-135. PubMed ID: 32285368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics as a new tool in radiation biology.
    Lacombe J; Phillips SL; Zenhausern F
    Cancer Lett; 2016 Feb; 371(2):292-300. PubMed ID: 26704304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
    Perestrelo AR; Águas AC; Rainer A; Forte G
    Sensors (Basel); 2015 Dec; 15(12):31142-70. PubMed ID: 26690442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy.
    Dhiman N; Kingshott P; Sumer H; Sharma CS; Rath SN
    Biosens Bioelectron; 2019 Jul; 137():236-254. PubMed ID: 31121461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study.
    Mahhengam N; Fahem Ghetran Khazaali A; Aravindhan S; Olegovna Zekiy A; Melnikova L; Siahmansouri H
    Crit Rev Anal Chem; 2022; 52(8):1863-1877. PubMed ID: 34024197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in on-chip vascularization.
    Haase K; Kamm RD
    Regen Med; 2017 Apr; 12(3):285-302. PubMed ID: 28318376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications.
    Feng Q; Sun J; Jiang X
    Nanoscale; 2016 Jul; 8(25):12430-43. PubMed ID: 26864887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic-based nanoparticle synthesis and their potential applications.
    Khizar S; Zine N; Errachid A; Jaffrezic-Renault N; Elaissari A
    Electrophoresis; 2022 Apr; 43(7-8):819-838. PubMed ID: 34758117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and evaluating drug delivery particles in microfluidic devices.
    Björnmalm M; Yan Y; Caruso F
    J Control Release; 2014 Sep; 190():139-49. PubMed ID: 24794898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery.
    Li Y; Lee RJ; Huang X; Li Y; Lv B; Wang T; Qi Y; Hao F; Lu J; Meng Q; Teng L; Zhou Y; Xie J; Teng L
    Nanomedicine; 2017 Feb; 13(2):371-381. PubMed ID: 27720989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.