These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32285370)

  • 41. Recent research advances of the biomimetic tumor microenvironment and regulatory factors on microfluidic devices: A systematic review.
    Xu H; Cheng C; Le W
    Electrophoresis; 2022 Apr; 43(7-8):839-847. PubMed ID: 35179796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organ-on-chip systems as a model for nanomedicine.
    Stavrou M; Phung N; Grimm J; Andreou C
    Nanoscale; 2023 Jun; 15(23):9927-9940. PubMed ID: 37254663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process.
    Baye J; Galvin C; Shen AQ
    Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior.
    de Roode KE; Hashemi K; Verdurmen WPR; Brock R
    Small; 2024 Aug; 20(35):e2402311. PubMed ID: 38700060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices.
    Martins AM; Brito A; Barbato MG; Felici A; Reis RL; Pires RA; Pashkuleva I; Decuzzi P
    Biomater Adv; 2023 Jan; 144():213227. PubMed ID: 36470174
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micro/nanofluidic devices for drug delivery.
    Kashaninejad N; Moradi E; Moghadas H
    Prog Mol Biol Transl Sci; 2022; 187(1):9-39. PubMed ID: 35094782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system.
    Tian C; Zheng S; Liu X; Kamei KI
    J Nanobiotechnology; 2022 Jul; 20(1):338. PubMed ID: 35858898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles.
    Chiesa E; Dorati R; Pisani S; Conti B; Bergamini G; Modena T; Genta I
    Pharmaceutics; 2018 Dec; 10(4):. PubMed ID: 30544868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in microfluidic technologies for cell-to-cell interaction studies.
    Rothbauer M; Zirath H; Ertl P
    Lab Chip; 2018 Jan; 18(2):249-270. PubMed ID: 29143053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications - a review.
    Ma J; Lee SM; Yi C; Li CW
    Lab Chip; 2017 Jan; 17(2):209-226. PubMed ID: 27991629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.
    Carvalho MR; Barata D; Teixeira LM; Giselbrecht S; Reis RL; Oliveira JM; Truckenmüller R; Habibovic P
    Sci Adv; 2019 May; 5(5):eaaw1317. PubMed ID: 31131324
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood-Vessel-on-a-Chip Platforms for Evaluating Nanoparticle Drug Delivery Systems.
    Li Y; Zhu K; Liu X; Zhang YS
    Curr Drug Metab; 2018; 19(2):100-109. PubMed ID: 28952434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in 3D Vascularized Tumor-on-a-Chip Technology.
    Jung S; Jo H; Hyung S; Jeon NL
    Adv Exp Med Biol; 2022; 1379():231-256. PubMed ID: 35760994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-cell Analysis with Microfluidic Devices.
    Ou X; Chen P; Liu BF
    Anal Sci; 2019 Jun; 35(6):609-618. PubMed ID: 30853696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides.
    Martins JP; Liu D; Fontana F; Ferreira MPA; Correia A; Valentino S; Kemell M; Moslova K; Mäkilä E; Salonen J; Hirvonen J; Sarmento B; Santos HA
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44354-44367. PubMed ID: 30525379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.