These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32285389)

  • 1. Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration.
    Molina-Guerrero CE; Sanchez A; Vázquez-Núñez E
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28607-28622. PubMed ID: 32285389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission factors of atmospheric and climatic pollutants from crop residues burning.
    Santiago-De La Rosa N; González-Cardoso G; Figueroa-Lara JJ; Gutiérrez-Arzaluz M; Octaviano-Villasana C; Ramírez-Hernández IF; Mugica-Álvarez V
    J Air Waste Manag Assoc; 2018 Aug; 68(8):849-865. PubMed ID: 29652225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.
    Vadrevu K; Lasko K
    J Environ Manage; 2015 Jan; 148():10-20. PubMed ID: 24502932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions.
    Kashif M; Awan MB; Nawaz S; Amjad M; Talib B; Farooq M; Nizami AS; Rehan M
    J Environ Manage; 2020 Feb; 256():109924. PubMed ID: 31818740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 Aug; 142():390-9. PubMed ID: 23748087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergy potential from crop residue biomass resources in Ethiopia.
    Tolessa A
    Heliyon; 2023 Feb; 9(2):e13572. PubMed ID: 36825179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of banana crop residue as an agricultural bioresource for the production of acetone-butanol-ethanol by Clostridium beijerinckii YVU1.
    Reddy LV; Veda AS; Wee YJ
    Lett Appl Microbiol; 2020 Jan; 70(1):36-41. PubMed ID: 31631376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass residues as twenty-first century bioenergy feedstock-a comparison of eight integrated assessment models.
    Hanssen SV; Daioglou V; Steinmann ZJN; Frank S; Popp A; Brunelle T; Lauri P; Hasegawa T; Huijbregts MAJ; Van Vuuren DP
    Clim Change; 2020; 163(3):1569-1586. PubMed ID: 33364667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Availability of crop residues as sustainable feedstock for bioethanol production in North Carolina.
    Shahbazi A; Li Y
    Appl Biochem Biotechnol; 2006; 129-132():41-54. PubMed ID: 16915630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agricultural residue availability in the United States.
    Haq Z; Easterly JL
    Appl Biochem Biotechnol; 2006; 129-132():3-21. PubMed ID: 16915628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass pellets for power generation in India: a techno-economic evaluation.
    Purohit P; Chaturvedi V
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29614-29632. PubMed ID: 30141169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.
    Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G
    Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The water footprint of bioenergy.
    Gerbens-Leenes W; Hoekstra AY; van der Meer TH
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10219-23. PubMed ID: 19497862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogas feedstock potentials and related water footprints from residues in China and the European Union.
    Yuan ZL; Gerbens-Leenes PW
    Sci Total Environ; 2021 Nov; 793():148340. PubMed ID: 34174599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of water requirement factors for biomass conversion pathway.
    Singh S; Kumar A
    Bioresour Technol; 2011 Jan; 102(2):1316-28. PubMed ID: 20888758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.