These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32285389)

  • 21. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass to levulinic acid: A techno-economic analysis and sustainability of biorefinery processes in Southeast Asia.
    Isoni V; Kumbang D; Sharratt PN; Khoo HH
    J Environ Manage; 2018 May; 214():267-275. PubMed ID: 29533824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The environmental sustainability of anaerobic digestion as a biomass valorization technology.
    De Meester S; Demeyer J; Velghe F; Peene A; Van Langenhove H; Dewulf J
    Bioresour Technol; 2012 Oct; 121():396-403. PubMed ID: 22864176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 May; 135():316-23. PubMed ID: 23127845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery.
    Zverlov VV; Berezina O; Velikodvorskaya GA; Schwarz WH
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):587-97. PubMed ID: 16685494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential of cereal-based agricultural residues available for bioenergy production.
    Rocha-Meneses L; Bergamo TF; Kikas T
    Data Brief; 2019 Apr; 23():103829. PubMed ID: 31372465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renewable feedstocks for biobutanol production by fermentation.
    Procentese A; Raganati F; Olivieri G; Russo ME; de la Feld M; Marzocchella A
    N Biotechnol; 2017 Oct; 39(Pt A):135-140. PubMed ID: 27989957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery.
    Parajuli R; Dalgaard T; Birkved M
    Sci Total Environ; 2018 Apr; 619-620():127-143. PubMed ID: 29145050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.
    Surendra KC; Ogoshi R; Zaleski HM; Hashimoto AG; Khanal SK
    Bioresour Technol; 2018 Mar; 251():218-229. PubMed ID: 29277053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.
    Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ
    Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biobutanol production from coffee silverskin.
    Hijosa-Valsero M; Garita-Cambronero J; Paniagua-García AI; Díez-Antolínez R
    Microb Cell Fact; 2018 Sep; 17(1):154. PubMed ID: 30261894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.
    Einarsson R; Persson UM
    PLoS One; 2017; 12(1):e0171001. PubMed ID: 28141827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis.
    Huang J; Du Y; Bao T; Lin M; Wang J; Yang ST
    Bioresour Technol; 2019 Nov; 292():121969. PubMed ID: 31415989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crop rotation and succession in a no-tillage system: Implications for CO
    Xavier CV; Moitinho MR; De Bortoli Teixeira D; André de Araújo Santos G; de Andrade Barbosa M; Bastos Pereira Milori DM; Rigobelo E; Corá JE; La Scala Júnior N
    J Environ Manage; 2019 Sep; 245():8-15. PubMed ID: 31136938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery.
    Sultana A; Kumar A
    Bioresour Technol; 2011 Nov; 102(21):9947-56. PubMed ID: 21917448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.