These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32285881)

  • 1. The catalytic effects of sulfur in ethane dehydroaromatization.
    Goodarzi F; Hansen LP; Helveg S; Mielby J; Nguyen TTM; Joensen F; Kegnæs S
    Chem Commun (Camb); 2020 May; 56(40):5378-5381. PubMed ID: 32285881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Rich Carbon Catalysts with Economic Feasibility for the Selective Oxidation of Hydrogen Sulfide to Sulfur.
    Yang C; Ye H; Byun J; Hou Y; Wang X
    Environ Sci Technol; 2020 Oct; 54(19):12621-12630. PubMed ID: 32841555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization.
    Saito H; Sekine Y
    RSC Adv; 2020 Jun; 10(36):21427-21453. PubMed ID: 35518732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorptive Hydrogen Scavenging for Enhanced Aromatics Yield During Non-oxidative Methane Dehydroaromatization on Mo/H-ZSM-5 Catalysts.
    Kumar A; Song K; Liu L; Han Y; Bhan A
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15577-15582. PubMed ID: 30295010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Production of Aromatics and CO
    Ye F; Fan S; Li W; Wang Y; Lang X; Zhang J; Li J; Li G
    Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Coke Combustion by Oxygen Pulsing During Mo/ZSM-5-Catalyzed Methane Dehydroaromatization.
    Kosinov N; Coumans FJ; Uslamin E; Kapteijn F; Hensen EJ
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15086-15090. PubMed ID: 27791321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodine-Catalyzed Selective Functionalization of Ethane in Oleum: Toward a Direct Process for the Production of Ethylene Glycol from Shale Gas.
    Bilke M; Zimmermann T; Schüth F
    J Am Chem Soc; 2020 Dec; 142(52):21712-21719. PubMed ID: 33346654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.
    Morejudo SH; Zanón R; Escolástico S; Yuste-Tirados I; Malerød-Fjeld H; Vestre PK; Coors WG; Martínez A; Norby T; Serra JM; Kjølseth C
    Science; 2016 Aug; 353(6299):563-6. PubMed ID: 27493179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSM-5 Zeolite.
    Chen Y; Gong K; Jiao F; Pan X; Hou G; Si R; Bao X
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6529-6534. PubMed ID: 31960561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy to convert propane to aromatics (BTX) using TiNp
    Al Maksoud W; Gevers LE; Vittenet J; Ould-Chikh S; Telalovic S; Bhatte K; Abou-Hamad E; Anjum DH; Hedhili MN; Vishwanath V; Alhazmi A; Almusaiteer K; Basset JM
    Dalton Trans; 2019 May; 48(19):6611-6620. PubMed ID: 31017165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane dehydroaromatization catalyzed by Mo/ZSM-5: location-steered activity and mechanism.
    Li G
    Chem Commun (Camb); 2023 Sep; 59(73):10932-10935. PubMed ID: 37605970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
    Sun M; Sun W; Barlaz MA
    Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor.
    Yang M; Shao J; Yang H; Zeng K; Wu Z; Chen Y; Bai X; Chen H
    Bioresour Technol; 2019 Feb; 273():77-85. PubMed ID: 30415072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.
    Chen CL; Wang CH; Weng HS
    Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.
    Sun T; Shen Y; Jia J
    Environ Sci Technol; 2014 Feb; 48(4):2263-72. PubMed ID: 24456468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism.
    Zhang J; Zuo W; Tian Y; Yin L; Gong Z; Zhang J
    J Hazard Mater; 2017 Jun; 331():117-122. PubMed ID: 28249180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of H2S in Crude Oil and Crude Oil Headspace Using Multidimensional Gas Chromatography, Deans Switching and Sulfur-selective Detection.
    Heshka NE; Hager DB
    J Vis Exp; 2015 Dec; (106):e53416. PubMed ID: 26709594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.
    Cai X; Sun W; Xu C; Cao L; Yang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18609-20. PubMed ID: 27301438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash.
    Kastner JR; Das KC; Buquoi Q; Melear ND
    Environ Sci Technol; 2003 Jun; 37(11):2568-74. PubMed ID: 12831045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.