These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32286165)

  • 1. Robotic Trajectories and Morphology Manipulation of Single Particle and Granular Materials by a Vibration Tweezer.
    Hou Z; Zhou Z; Liu P; Pei Y
    Soft Robot; 2021 Feb; 8(1):1-9. PubMed ID: 32286165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable Particle Swarm Robotics Powered by Acoustic Vibration Tweezer.
    Zhou Z; Hou Z; Pei Y
    Soft Robot; 2021 Dec; 8(6):735-743. PubMed ID: 33216709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of Heavy Particles on a Submerged Chladni Plate.
    Latifi K; Wijaya H; Zhou Q
    Phys Rev Lett; 2019 May; 122(18):184301. PubMed ID: 31144874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable assembly of particles on a Chladni plate.
    Kopitca A; Latifi K; Zhou Q
    Sci Adv; 2021 Sep; 7(39):eabi7716. PubMed ID: 34550737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.
    Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow.
    Lv C; Varanakkottu SN; Baier T; Hardt S
    Nano Lett; 2018 Nov; 18(11):6924-6930. PubMed ID: 30285458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the motion of multiple objects on a Chladni plate.
    Zhou Q; Sariola V; Latifi K; Liimatainen V
    Nat Commun; 2016 Sep; 7():12764. PubMed ID: 27611347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Chip Arbitrary Manipulation of Single Particles by Acoustic Resonator Array.
    You R; Wu H; Pang W; Duan X
    Anal Chem; 2022 Apr; 94(13):5392-5398. PubMed ID: 35319870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells.
    Ma Z; Zhou Y; Cai F; Meng L; Zheng H; Ai Y
    Lab Chip; 2020 Aug; 20(16):2947-2953. PubMed ID: 32661536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary wave tweezer.
    Orme B; Torun H; Unthank M; Fu YQ; Ford B; Agrawal P
    Sci Rep; 2024 May; 14(1):12448. PubMed ID: 38816398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of granular spheres under one-dimensional vibration.
    Amirifar R; Dong K; Zeng Q; An X
    Soft Matter; 2018 Dec; 14(48):9856-9869. PubMed ID: 30480310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Magnetic-Field-Assisted Milli-Scale Robotic Assembly Machine: An Approach to Parallel Robotic Automation Systems.
    Liu Y; Ravindra NM
    Micromachines (Basel); 2018 Mar; 9(4):. PubMed ID: 30424078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic tweezers using bisymmetric coherent surface acoustic waves for dynamic and reconfigurable manipulation of particle multimers.
    Pan H; Mei D; Xu C; Li X; Wang Y
    J Colloid Interface Sci; 2023 Aug; 643():115-123. PubMed ID: 37058887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimodal self-assembly of granular spheres under vertical vibration.
    Amirifar R; Dong K; Zeng Q; An X
    Soft Matter; 2019 Jul; 15(29):5933-5944. PubMed ID: 31286134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Manipulation in Mid-Air Using a Single Transducer Acoustic Levitator.
    Wijaya H; Latifi K; Zhou Q
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31003415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed loop control of microscopic particles incorporating steady streaming and visual feedback.
    Abadi A; Kosa G
    Biomed Microdevices; 2018 Mar; 20(2):28. PubMed ID: 29524045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustophoresis-driven particle focusing and separation with standard/inverse Chladni patterns.
    Zhao X; Hao N
    Lab Chip; 2024 Jun; 24(12):3149-3157. PubMed ID: 38787691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides.
    Li J; Shen C; Huang TJ; Cummer SA
    Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34407929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.