These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 32286261)
1. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Diehl AG; Ouyang N; Boyle AP Nat Commun; 2020 Apr; 11(1):1796. PubMed ID: 32286261 [TBL] [Abstract][Full Text] [Related]
2. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]
3. The ChAHP Complex Counteracts Chromatin Looping at CTCF Sites that Emerged from SINE Expansions in Mouse. Kaaij LJT; Mohn F; van der Weide RH; de Wit E; Bühler M Cell; 2019 Sep; 178(6):1437-1451.e14. PubMed ID: 31491387 [TBL] [Abstract][Full Text] [Related]
4. Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes. Choudhary MNK; Quaid K; Xing X; Schmidt H; Wang T Nat Commun; 2023 Feb; 14(1):634. PubMed ID: 36746940 [TBL] [Abstract][Full Text] [Related]
5. Local chromatin interactions contribute to expression of the fibrinogen gene cluster. Espitia Jaimes C; Fish RJ; Neerman-Arbez M J Thromb Haemost; 2018 Oct; 16(10):2070-2082. PubMed ID: 30039577 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus. Wu Y; Jia Z; Ge X; Wu Q Sci China Life Sci; 2020 Jun; 63(6):835-844. PubMed ID: 32249388 [TBL] [Abstract][Full Text] [Related]
7. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Choudhary MN; Friedman RZ; Wang JT; Jang HS; Zhuo X; Wang T Genome Biol; 2020 Jan; 21(1):16. PubMed ID: 31973766 [TBL] [Abstract][Full Text] [Related]
8. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Beagan JA; Duong MT; Titus KR; Zhou L; Cao Z; Ma J; Lachanski CV; Gillis DR; Phillips-Cremins JE Genome Res; 2017 Jul; 27(7):1139-1152. PubMed ID: 28536180 [TBL] [Abstract][Full Text] [Related]
9. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver. Matthews BJ; Waxman DJ Elife; 2018 May; 7():. PubMed ID: 29757144 [TBL] [Abstract][Full Text] [Related]
10. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure. Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910 [TBL] [Abstract][Full Text] [Related]
11. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry. Zhang M; Huang H; Li J; Wu Q Cell Rep; 2024 Jan; 43(1):113663. PubMed ID: 38206813 [TBL] [Abstract][Full Text] [Related]
12. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Luo H; Zhu G; Eshelman MA; Fung TK; Lai Q; Wang F; Zeisig BB; Lesperance J; Ma X; Chen S; Cesari N; Cogle C; Chen B; Xu B; Yang FC; So CWE; Qiu Y; Xu M; Huang S Mol Cell; 2022 Feb; 82(4):833-851.e11. PubMed ID: 35180428 [TBL] [Abstract][Full Text] [Related]
13. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. Tark-Dame M; Jerabek H; Manders EM; van der Wateren IM; Heermann DW; van Driel R PLoS Comput Biol; 2014 Oct; 10(10):e1003877. PubMed ID: 25299688 [TBL] [Abstract][Full Text] [Related]
14. Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation. Ge X; Huang H; Han K; Xu W; Wang Z; Wu Q Nat Commun; 2023 Dec; 14(1):8101. PubMed ID: 38062010 [TBL] [Abstract][Full Text] [Related]
15. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection. Jia Z; Li J; Ge X; Wu Y; Guo Y; Wu Q Genome Biol; 2020 Mar; 21(1):75. PubMed ID: 32293525 [TBL] [Abstract][Full Text] [Related]
16. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Zhang H; Shi Z; Banigan EJ; Kim Y; Yu H; Bai XC; Finkelstein IJ Mol Cell; 2023 Aug; 83(16):2856-2871.e8. PubMed ID: 37536339 [TBL] [Abstract][Full Text] [Related]
17. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. Popay TM; Dixon JR J Biol Chem; 2022 Aug; 298(8):102117. PubMed ID: 35691341 [TBL] [Abstract][Full Text] [Related]
18. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Pugacheva EM; Kubo N; Loukinov D; Tajmul M; Kang S; Kovalchuk AL; Strunnikov AV; Zentner GE; Ren B; Lobanenkov VV Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2020-2031. PubMed ID: 31937660 [TBL] [Abstract][Full Text] [Related]
19. Distinct Classes of Chromatin Loops Revealed by Deletion of an RNA-Binding Region in CTCF. Hansen AS; Hsieh TS; Cattoglio C; Pustova I; Saldaña-Meyer R; Reinberg D; Darzacq X; Tjian R Mol Cell; 2019 Nov; 76(3):395-411.e13. PubMed ID: 31522987 [TBL] [Abstract][Full Text] [Related]
20. Loop stacking organizes genome folding from TADs to chromosomes. Hafner A; Park M; Berger SE; Murphy SE; Nora EP; Boettiger AN Mol Cell; 2023 May; 83(9):1377-1392.e6. PubMed ID: 37146570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]