These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32286385)

  • 21. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.
    Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V
    J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean ( Glycine max L. Merr.) Mutants on Their Contents of Inositol Phosphate Isomers.
    Goßner S; Yuan F; Zhou C; Tan Y; Shu Q; Engel KH
    J Agric Food Chem; 2019 Jan; 67(1):247-257. PubMed ID: 30541281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.
    Guo X; Duan X; Wu Y; Cheng J; Zhang J; Zhang H; Li B
    J Agric Food Chem; 2018 Feb; 66(7):1670-1677. PubMed ID: 29394054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNAi-mediated down-regulation of
    Sengupta S; Bhattacharya S; Karmakar A; Ghosh S; Sarkar SN; Gangopadhyay G; Datta K; Datta SK
    J Biosci; 2021; 46():. PubMed ID: 33859067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.
    Yuan F; Yu X; Dong D; Yang Q; Fu X; Zhu S; Zhu D
    BMC Plant Biol; 2017 Jan; 17(1):16. PubMed ID: 28100173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytase transgenic corn in nutrition of laying hens: residual phytase activity and phytate phosphorus content in the gastrointestinal tract.
    Gao CQ; Ji C; Zhao LH; Zhang JY; Ma QG
    Poult Sci; 2013 Nov; 92(11):2923-9. PubMed ID: 24135596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize.
    Yazdani M; Zallot R; Tunc-Ozdemir M; de Crécy-Lagard V; Shintani DK; Hanson AD
    Phytochemistry; 2013 Oct; 94():68-73. PubMed ID: 23816351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic Acid Soybean ( Glycine max L. Merr.) Mutants upon Cross-Breeding.
    Goßner S; Yuan F; Zhou C; Tan Y; Shu Q; Engel KH
    J Agric Food Chem; 2019 May; 67(17):5043-5052. PubMed ID: 30977368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems.
    Cominelli E; Confalonieri M; Carlessi M; Cortinovis G; Daminati MG; Porch TG; Losa A; Sparvoli F
    Plant Sci; 2018 May; 270():1-12. PubMed ID: 29576062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds.
    Xu XH; Zhao HJ; Liu QL; Frank T; Engel KH; An G; Shu QY
    Theor Appl Genet; 2009 Jun; 119(1):75-83. PubMed ID: 19370321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving nutritional quality of maize proteins by expressing sense and antisense zein genes.
    Huang S; Adams WR; Zhou Q; Malloy KP; Voyles DA; Anthony J; Kriz AL; Luethy MH
    J Agric Food Chem; 2004 Apr; 52(7):1958-64. PubMed ID: 15053536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. myo-Inositol-1,2,3,4,5,6-hexakisphosphate.
    Raboy V
    Phytochemistry; 2003 Nov; 64(6):1033-43. PubMed ID: 14568069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of aqueous soaking on the phytate and mineral contents and phytate:mineral ratios of wholegrain normal sorghum and maize and low phytate sorghum.
    Kruger J; Oelofse A; Taylor JR
    Int J Food Sci Nutr; 2014 Aug; 65(5):539-46. PubMed ID: 24524560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adh locus in maize for detection of mutagens in the environment.
    Schwartz D
    Environ Health Perspect; 1981 Jan; 37():75-7. PubMed ID: 7007036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of home-based processing methods to reduce the phytate content and phytate/zinc molar ratio of white maize (Zea mays).
    Hotz C; Gibson RS
    J Agric Food Chem; 2001 Feb; 49(2):692-8. PubMed ID: 11262014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1.
    Raboy V; Gerbasi PF; Young KA; Stoneberg SD; Pickett SG; Bauman AT; Murthy PP; Sheridan WF; Ertl DS
    Plant Physiol; 2000 Sep; 124(1):355-68. PubMed ID: 10982449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the History of Safe Use of the Maize ZMM28 Protein.
    Anderson JA; Brustkern S; Cong B; Deege L; Delaney B; Hong B; Lawit S; Mathesius C; Schmidt J; Wu J; Zhang J; Zimmermann C
    J Agric Food Chem; 2019 Jul; 67(26):7466-7474. PubMed ID: 31184886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A home-based method to reduce phytate content and increase zinc bioavailability in maize-based complementary diets.
    Hotz C; Gibson RS; Temple L
    Int J Food Sci Nutr; 2001 Mar; 52(2):133-42. PubMed ID: 11303461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nutritive quality of maize-soybean (70:30) tempe flour.
    Tchango Tchango J
    Plant Foods Hum Nutr; 1995 Jun; 47(4):319-26. PubMed ID: 8577649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas.
    Mendoza C; Viteri FE; Lönnerdal B; Young KA; Raboy V; Brown KH
    Am J Clin Nutr; 1998 Nov; 68(5):1123-7. PubMed ID: 9808232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.