These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32286418)
1. Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications. Behera S; Fry PW; Francis H; Jin CY; Hopkinson M Sci Rep; 2020 Apr; 10(1):6269. PubMed ID: 32286418 [TBL] [Abstract][Full Text] [Related]
2. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications. Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS Opt Express; 2014 Mar; 22(5):A328-34. PubMed ID: 24800289 [TBL] [Abstract][Full Text] [Related]
3. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications. Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS Opt Express; 2014 Mar; 22 Suppl 2():A328-34. PubMed ID: 24922242 [TBL] [Abstract][Full Text] [Related]
4. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink. Yeo CI; Song YM; Jang SJ; Lee YT Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface. Leem JW; Yu JS J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption. Xia R; Li Y; You S; Lu C; Xu W; Ni Y Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687683 [TBL] [Abstract][Full Text] [Related]
7. Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III-V Multijunction Solar Cells. Reuna J; Hietalahti A; Aho A; Isoaho R; Aho T; Vuorinen M; Tukiainen A; Anttola E; Guina M ACS Appl Energy Mater; 2022 May; 5(5):5804-5810. PubMed ID: 35647495 [TBL] [Abstract][Full Text] [Related]
8. Antireflective disordered subwavelength structure on GaAs using spin-coated Ag ink mask. Yeo CI; Kwon JH; Jang SJ; Lee YT Opt Express; 2012 Aug; 20(17):19554-62. PubMed ID: 23038597 [TBL] [Abstract][Full Text] [Related]
9. Optimized antireflective silicon nanostructure arrays using nanosphere lithography. Lee D; Bae J; Hong S; Yang H; Kim YB Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196 [TBL] [Abstract][Full Text] [Related]
10. Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells. Liu Y; Sun SH; Xu J; Zhao L; Sun HC; Li J; Mu WW; Xu L; Chen KJ Opt Express; 2011 Sep; 19 Suppl 5():A1051-6. PubMed ID: 21935247 [TBL] [Abstract][Full Text] [Related]
11. Broadband Enhancement of Anti-reflectivity for a High Angle of Incidence Using Nanocone Geometry. Ji S; Yun YS; Lee J; Jeon DJ; Kim N; Lim H; Yeo JS ACS Appl Mater Interfaces; 2022 Apr; 14(16):18825-18834. PubMed ID: 35427107 [TBL] [Abstract][Full Text] [Related]
12. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. Leem JW; Song YM; Yu JS Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259 [TBL] [Abstract][Full Text] [Related]
13. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications. Leem JW; Song YM; Yu JS Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215 [TBL] [Abstract][Full Text] [Related]
14. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. Song YM; Yu JS; Lee YT Opt Lett; 2010 Feb; 35(3):276-8. PubMed ID: 20125693 [TBL] [Abstract][Full Text] [Related]
15. Efficiency enhancement InGaP/GaAs dual-junction solar cell with subwavelength antireflection nanorod arrays. Tsai MA; Chen HC; Tseng PC; Yu P; Chiu CH; Kuo HC; Lin SH J Nanosci Nanotechnol; 2011 Dec; 11(12):10729-32. PubMed ID: 22408983 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications. Leem JW; Song YM; Yu JS Nanoscale; 2013 Nov; 5(21):10455-60. PubMed ID: 24056915 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications. Dong L; Zhang Z; Wang L; Weng Z; Ouyang M; Fu Y; Wang J; Li D; Wang Z Appl Opt; 2019 Aug; 58(24):6706-6712. PubMed ID: 31503604 [TBL] [Abstract][Full Text] [Related]
18. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures. Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087 [TBL] [Abstract][Full Text] [Related]
19. Electrical and Optical Characterization of Sputtered Silicon Dioxide, Indium Tin Oxide, and Silicon Dioxide/Indium Tin Oxide Antireflection Coating on Single-Junction GaAs Solar Cells. Ho WJ; Lin JC; Liu JJ; Bai WB; Shiao HP Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773063 [TBL] [Abstract][Full Text] [Related]
20. Optical design of ZnO-based antireflective layers for enhanced GaAs solar cell performance. Lee HJ; Lee JW; Kim HJ; Jung DH; Lee KS; Kim SH; Geum DM; Kim CZ; Choi WJ; Baik JM Phys Chem Chem Phys; 2016 Jan; 18(4):2906-12. PubMed ID: 26732237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]